Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array
Nowadays, there is no good scheme for simultaneously achieving super-resolution imaging within a coherent beamwidth and beam scanning in microwave radar. In this paper, a synthetic beam scanning method based on a randomly excited antenna array, which possesses the ability of super-resolution coincid...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Li, Die Zhu, Shitao Zhang, Ming Nian, Yiheng Zhao, Mengran Chen, Xiaoming Yi, Jianjia |
description | Nowadays, there is no good scheme for simultaneously achieving super-resolution imaging within a coherent beamwidth and beam scanning in microwave radar. In this paper, a synthetic beam scanning method based on a randomly excited antenna array, which possesses the ability of super-resolution coincidence imaging, is proposed. The beamwidth of the randomly excited array is comparable to that of the conventional phased array with the same size, and its steering angle can be adjusted by modulating the excitation signals. Firstly, the optimized covariance matrix of the proposed array to uniformly bunch the spatial radiation energy in a specific angle range is obtained by means of the sequential quadratic programming (SQP) algorithm. Accordingly, the partially correlated excitation signals restricted by the optimized covariance matrix are determined. Then, a secondary weighted modulation method is proposed to steer the main beam to the direction of interest. The excitation signals are weighted by the conjugated radiation fields in the direction of interest. Furthermore, the super-resolution ability of the proposed coincidence imaging system is analyzed based on the first-order statistical characteristics of the radiation fields. Simulations and experiments demonstrate that synthetic beam scanning can be realized by controlling the excitation signals. Besides, a 10 times super-resolution coincidence image can be reconstructed within a coherent beamwidth (3dB-beamwidth) when the signal-to-noise (SNR) is greater than 15 dB, assisted by the fast Bayesian learning (FBL) algorithm. |
doi_str_mv | 10.1109/TGRS.2023.3286103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831521847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10151918</ieee_id><sourcerecordid>2831521847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-2d8f365bd4ea5ee96c1c56ffd8d2f96979ef11f6b4dfca0ac4c46570da4f8e6e3</originalsourceid><addsrcrecordid>eNpNkMFqAjEQhkNpodb2AQo9BHpem8km2exRxVpBKKg9LzGZ6IqbtdkVum_fFXvoaeCf75-Bj5BnYCMAlr9t5qv1iDOejlKuFbD0hgxASp0wJcQtGTDIVcJ1zu_JQ9McGAMhIRuQ_boL7R7b0tIJmoqurQmhDDtqgqPr8wljssKmPp7bsg50WpfBlg6DRbqozO4CTkyDjvbLVV-pq2NHZz-2bPtsHFoMwdBxjKZ7JHfeHBt8-ptD8vU-20w_kuXnfDEdLxPLhWoT7rRPldw6gUYi5sqClcp7px33ucqzHD2AV1vhvDXMWGGFkhlzRniNCtMheb3ePcX6-4xNWxzqcwz9y4LrFCQHLbKegitlY900EX1ximVlYlcAKy5Ci4vQ4iK0-BPad16unRIR__EgIQed_gIihnNy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521847</pqid></control><display><type>article</type><title>Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Die ; Zhu, Shitao ; Zhang, Ming ; Nian, Yiheng ; Zhao, Mengran ; Chen, Xiaoming ; Yi, Jianjia</creator><creatorcontrib>Li, Die ; Zhu, Shitao ; Zhang, Ming ; Nian, Yiheng ; Zhao, Mengran ; Chen, Xiaoming ; Yi, Jianjia</creatorcontrib><description>Nowadays, there is no good scheme for simultaneously achieving super-resolution imaging within a coherent beamwidth and beam scanning in microwave radar. In this paper, a synthetic beam scanning method based on a randomly excited antenna array, which possesses the ability of super-resolution coincidence imaging, is proposed. The beamwidth of the randomly excited array is comparable to that of the conventional phased array with the same size, and its steering angle can be adjusted by modulating the excitation signals. Firstly, the optimized covariance matrix of the proposed array to uniformly bunch the spatial radiation energy in a specific angle range is obtained by means of the sequential quadratic programming (SQP) algorithm. Accordingly, the partially correlated excitation signals restricted by the optimized covariance matrix are determined. Then, a secondary weighted modulation method is proposed to steer the main beam to the direction of interest. The excitation signals are weighted by the conjugated radiation fields in the direction of interest. Furthermore, the super-resolution ability of the proposed coincidence imaging system is analyzed based on the first-order statistical characteristics of the radiation fields. Simulations and experiments demonstrate that synthetic beam scanning can be realized by controlling the excitation signals. Besides, a 10 times super-resolution coincidence image can be reconstructed within a coherent beamwidth (3dB-beamwidth) when the signal-to-noise (SNR) is greater than 15 dB, assisted by the fast Bayesian learning (FBL) algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3286103</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Antennas ; Bayesian analysis ; Beam scanning ; coincidence imaging ; Covariance matrix ; Direction ; Excitation ; Fields ; Image reconstruction ; Image resolution ; Imaging ; Imaging techniques ; Machine learning ; Phased arrays ; Probability theory ; Quadratic programming ; Radar ; Radar antennas ; Radar imaging ; Radar remote sensing ; Radiation ; randomly excited array ; Scanning ; Signal to noise ratio ; Steering ; super-resolution ; Superresolution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-2d8f365bd4ea5ee96c1c56ffd8d2f96979ef11f6b4dfca0ac4c46570da4f8e6e3</cites><orcidid>0000-0003-3361-1994 ; 0000-0002-2201-867X ; 0000-0002-5796-4754 ; 0000-0003-0003-5441 ; 0000-0002-8834-8639 ; 0000-0003-3151-1690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10151918$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10151918$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Die</creatorcontrib><creatorcontrib>Zhu, Shitao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Nian, Yiheng</creatorcontrib><creatorcontrib>Zhao, Mengran</creatorcontrib><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Yi, Jianjia</creatorcontrib><title>Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Nowadays, there is no good scheme for simultaneously achieving super-resolution imaging within a coherent beamwidth and beam scanning in microwave radar. In this paper, a synthetic beam scanning method based on a randomly excited antenna array, which possesses the ability of super-resolution coincidence imaging, is proposed. The beamwidth of the randomly excited array is comparable to that of the conventional phased array with the same size, and its steering angle can be adjusted by modulating the excitation signals. Firstly, the optimized covariance matrix of the proposed array to uniformly bunch the spatial radiation energy in a specific angle range is obtained by means of the sequential quadratic programming (SQP) algorithm. Accordingly, the partially correlated excitation signals restricted by the optimized covariance matrix are determined. Then, a secondary weighted modulation method is proposed to steer the main beam to the direction of interest. The excitation signals are weighted by the conjugated radiation fields in the direction of interest. Furthermore, the super-resolution ability of the proposed coincidence imaging system is analyzed based on the first-order statistical characteristics of the radiation fields. Simulations and experiments demonstrate that synthetic beam scanning can be realized by controlling the excitation signals. Besides, a 10 times super-resolution coincidence image can be reconstructed within a coherent beamwidth (3dB-beamwidth) when the signal-to-noise (SNR) is greater than 15 dB, assisted by the fast Bayesian learning (FBL) algorithm.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Antennas</subject><subject>Bayesian analysis</subject><subject>Beam scanning</subject><subject>coincidence imaging</subject><subject>Covariance matrix</subject><subject>Direction</subject><subject>Excitation</subject><subject>Fields</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Imaging techniques</subject><subject>Machine learning</subject><subject>Phased arrays</subject><subject>Probability theory</subject><subject>Quadratic programming</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar imaging</subject><subject>Radar remote sensing</subject><subject>Radiation</subject><subject>randomly excited array</subject><subject>Scanning</subject><subject>Signal to noise ratio</subject><subject>Steering</subject><subject>super-resolution</subject><subject>Superresolution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFqAjEQhkNpodb2AQo9BHpem8km2exRxVpBKKg9LzGZ6IqbtdkVum_fFXvoaeCf75-Bj5BnYCMAlr9t5qv1iDOejlKuFbD0hgxASp0wJcQtGTDIVcJ1zu_JQ9McGAMhIRuQ_boL7R7b0tIJmoqurQmhDDtqgqPr8wljssKmPp7bsg50WpfBlg6DRbqozO4CTkyDjvbLVV-pq2NHZz-2bPtsHFoMwdBxjKZ7JHfeHBt8-ptD8vU-20w_kuXnfDEdLxPLhWoT7rRPldw6gUYi5sqClcp7px33ucqzHD2AV1vhvDXMWGGFkhlzRniNCtMheb3ePcX6-4xNWxzqcwz9y4LrFCQHLbKegitlY900EX1ximVlYlcAKy5Ci4vQ4iK0-BPad16unRIR__EgIQed_gIihnNy</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Die</creator><creator>Zhu, Shitao</creator><creator>Zhang, Ming</creator><creator>Nian, Yiheng</creator><creator>Zhao, Mengran</creator><creator>Chen, Xiaoming</creator><creator>Yi, Jianjia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3361-1994</orcidid><orcidid>https://orcid.org/0000-0002-2201-867X</orcidid><orcidid>https://orcid.org/0000-0002-5796-4754</orcidid><orcidid>https://orcid.org/0000-0003-0003-5441</orcidid><orcidid>https://orcid.org/0000-0002-8834-8639</orcidid><orcidid>https://orcid.org/0000-0003-3151-1690</orcidid></search><sort><creationdate>20230101</creationdate><title>Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array</title><author>Li, Die ; Zhu, Shitao ; Zhang, Ming ; Nian, Yiheng ; Zhao, Mengran ; Chen, Xiaoming ; Yi, Jianjia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-2d8f365bd4ea5ee96c1c56ffd8d2f96979ef11f6b4dfca0ac4c46570da4f8e6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Antennas</topic><topic>Bayesian analysis</topic><topic>Beam scanning</topic><topic>coincidence imaging</topic><topic>Covariance matrix</topic><topic>Direction</topic><topic>Excitation</topic><topic>Fields</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Imaging techniques</topic><topic>Machine learning</topic><topic>Phased arrays</topic><topic>Probability theory</topic><topic>Quadratic programming</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar imaging</topic><topic>Radar remote sensing</topic><topic>Radiation</topic><topic>randomly excited array</topic><topic>Scanning</topic><topic>Signal to noise ratio</topic><topic>Steering</topic><topic>super-resolution</topic><topic>Superresolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Die</creatorcontrib><creatorcontrib>Zhu, Shitao</creatorcontrib><creatorcontrib>Zhang, Ming</creatorcontrib><creatorcontrib>Nian, Yiheng</creatorcontrib><creatorcontrib>Zhao, Mengran</creatorcontrib><creatorcontrib>Chen, Xiaoming</creatorcontrib><creatorcontrib>Yi, Jianjia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Die</au><au>Zhu, Shitao</au><au>Zhang, Ming</au><au>Nian, Yiheng</au><au>Zhao, Mengran</au><au>Chen, Xiaoming</au><au>Yi, Jianjia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Nowadays, there is no good scheme for simultaneously achieving super-resolution imaging within a coherent beamwidth and beam scanning in microwave radar. In this paper, a synthetic beam scanning method based on a randomly excited antenna array, which possesses the ability of super-resolution coincidence imaging, is proposed. The beamwidth of the randomly excited array is comparable to that of the conventional phased array with the same size, and its steering angle can be adjusted by modulating the excitation signals. Firstly, the optimized covariance matrix of the proposed array to uniformly bunch the spatial radiation energy in a specific angle range is obtained by means of the sequential quadratic programming (SQP) algorithm. Accordingly, the partially correlated excitation signals restricted by the optimized covariance matrix are determined. Then, a secondary weighted modulation method is proposed to steer the main beam to the direction of interest. The excitation signals are weighted by the conjugated radiation fields in the direction of interest. Furthermore, the super-resolution ability of the proposed coincidence imaging system is analyzed based on the first-order statistical characteristics of the radiation fields. Simulations and experiments demonstrate that synthetic beam scanning can be realized by controlling the excitation signals. Besides, a 10 times super-resolution coincidence image can be reconstructed within a coherent beamwidth (3dB-beamwidth) when the signal-to-noise (SNR) is greater than 15 dB, assisted by the fast Bayesian learning (FBL) algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3286103</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3361-1994</orcidid><orcidid>https://orcid.org/0000-0002-2201-867X</orcidid><orcidid>https://orcid.org/0000-0002-5796-4754</orcidid><orcidid>https://orcid.org/0000-0003-0003-5441</orcidid><orcidid>https://orcid.org/0000-0002-8834-8639</orcidid><orcidid>https://orcid.org/0000-0003-3151-1690</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2831521847 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antenna arrays Antennas Bayesian analysis Beam scanning coincidence imaging Covariance matrix Direction Excitation Fields Image reconstruction Image resolution Imaging Imaging techniques Machine learning Phased arrays Probability theory Quadratic programming Radar Radar antennas Radar imaging Radar remote sensing Radiation randomly excited array Scanning Signal to noise ratio Steering super-resolution Superresolution |
title | Synthetic Beam Scanning and Super-Resolution Coincidence Imaging Based on Randomly Excited Antenna Array |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Beam%20Scanning%20and%20Super-Resolution%20Coincidence%20Imaging%20Based%20on%20Randomly%20Excited%20Antenna%20Array&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Die&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3286103&rft_dat=%3Cproquest_RIE%3E2831521847%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831521847&rft_id=info:pmid/&rft_ieee_id=10151918&rfr_iscdi=true |