Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric
Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the styl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2023-07, Vol.33 (7), p.3055-3070 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3070 |
---|---|
container_issue | 7 |
container_start_page | 3055 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 33 |
creator | Chen, Hangwei Shao, Feng Chai, Xiongli Gu, Yuese Jiang, Qiuping Meng, Xiangchao Ho, Yo-Sung |
description | Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE |
doi_str_mv | 10.1109/TCSVT.2022.3231041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831521536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9994780</ieee_id><sourcerecordid>2831521536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-ecbc663a78ab7c4c0d887d5a4ce2930f1e380d737c85e7000d9757b849d1b65e3</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKf_gL4EfO68JE2T-jbG_AGTIet8DWl6hY7azjQd9L-3c7KnO-6-3zu-H0LuGcwYg_QpW2y-shkHzmeCCwYxuyATJqWOOAd5OfYgWaQ5k9fkput2ACzWsZqQ7Wdv6yoMdHmwdW9D1Ta0Lenc51Xw1g90E4YaaeZt05Xon-mmz3foQnXAcdUXA7VNQdfn2QcGX7lbclXausO7_zol25dltniLVuvX98V8FTmeyhChy12SCKu0zZWLHRRaq0La2CFPBZQMhYZCCeW0RAUARaqkynWcFixPJIopeTzd3fv2p8cumF3b-2Z8abgWTI55RTKq-EnlfNt1Hkuz99X3GM4wMEd85g-fOeIz__hG08PJVCHi2ZCmaaw0iF-gYmwB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831521536</pqid></control><display><type>article</type><title>Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Chen, Hangwei ; Shao, Feng ; Chai, Xiongli ; Gu, Yuese ; Jiang, Qiuping ; Meng, Xiangchao ; Ho, Yo-Sung</creator><creatorcontrib>Chen, Hangwei ; Shao, Feng ; Chai, Xiongli ; Gu, Yuese ; Jiang, Qiuping ; Meng, Xiangchao ; Ho, Yo-Sung</creatorcontrib><description>Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2022.3231041</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arbitrary style transfer (AST) ; content preservation (CP) ; Image quality ; image quality assessment (IQA) ; Industrial applications ; Measurement ; Neural networks ; overall vision (OV) ; Q-factor ; Quality assessment ; Source code ; sparse coding ; sparse feature similarity ; style resemblance (SR) ; Task analysis</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2023-07, Vol.33 (7), p.3055-3070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-ecbc663a78ab7c4c0d887d5a4ce2930f1e380d737c85e7000d9757b849d1b65e3</citedby><cites>FETCH-LOGICAL-c295t-ecbc663a78ab7c4c0d887d5a4ce2930f1e380d737c85e7000d9757b849d1b65e3</cites><orcidid>0000-0002-6025-9343 ; 0000-0002-2495-9924 ; 0000-0002-4245-5391 ; 0000-0002-7220-1034 ; 0000-0002-3756-2029 ; 0000-0002-7405-3143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9994780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9994780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Hangwei</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Chai, Xiongli</creatorcontrib><creatorcontrib>Gu, Yuese</creatorcontrib><creatorcontrib>Jiang, Qiuping</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><title>Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE</description><subject>Algorithms</subject><subject>Arbitrary style transfer (AST)</subject><subject>content preservation (CP)</subject><subject>Image quality</subject><subject>image quality assessment (IQA)</subject><subject>Industrial applications</subject><subject>Measurement</subject><subject>Neural networks</subject><subject>overall vision (OV)</subject><subject>Q-factor</subject><subject>Quality assessment</subject><subject>Source code</subject><subject>sparse coding</subject><subject>sparse feature similarity</subject><subject>style resemblance (SR)</subject><subject>Task analysis</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKf_gL4EfO68JE2T-jbG_AGTIet8DWl6hY7azjQd9L-3c7KnO-6-3zu-H0LuGcwYg_QpW2y-shkHzmeCCwYxuyATJqWOOAd5OfYgWaQ5k9fkput2ACzWsZqQ7Wdv6yoMdHmwdW9D1Ta0Lenc51Xw1g90E4YaaeZt05Xon-mmz3foQnXAcdUXA7VNQdfn2QcGX7lbclXausO7_zol25dltniLVuvX98V8FTmeyhChy12SCKu0zZWLHRRaq0La2CFPBZQMhYZCCeW0RAUARaqkynWcFixPJIopeTzd3fv2p8cumF3b-2Z8abgWTI55RTKq-EnlfNt1Hkuz99X3GM4wMEd85g-fOeIz__hG08PJVCHi2ZCmaaw0iF-gYmwB</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chen, Hangwei</creator><creator>Shao, Feng</creator><creator>Chai, Xiongli</creator><creator>Gu, Yuese</creator><creator>Jiang, Qiuping</creator><creator>Meng, Xiangchao</creator><creator>Ho, Yo-Sung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6025-9343</orcidid><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid><orcidid>https://orcid.org/0000-0002-4245-5391</orcidid><orcidid>https://orcid.org/0000-0002-7220-1034</orcidid><orcidid>https://orcid.org/0000-0002-3756-2029</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></search><sort><creationdate>20230701</creationdate><title>Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric</title><author>Chen, Hangwei ; Shao, Feng ; Chai, Xiongli ; Gu, Yuese ; Jiang, Qiuping ; Meng, Xiangchao ; Ho, Yo-Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-ecbc663a78ab7c4c0d887d5a4ce2930f1e380d737c85e7000d9757b849d1b65e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Arbitrary style transfer (AST)</topic><topic>content preservation (CP)</topic><topic>Image quality</topic><topic>image quality assessment (IQA)</topic><topic>Industrial applications</topic><topic>Measurement</topic><topic>Neural networks</topic><topic>overall vision (OV)</topic><topic>Q-factor</topic><topic>Quality assessment</topic><topic>Source code</topic><topic>sparse coding</topic><topic>sparse feature similarity</topic><topic>style resemblance (SR)</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hangwei</creatorcontrib><creatorcontrib>Shao, Feng</creatorcontrib><creatorcontrib>Chai, Xiongli</creatorcontrib><creatorcontrib>Gu, Yuese</creatorcontrib><creatorcontrib>Jiang, Qiuping</creatorcontrib><creatorcontrib>Meng, Xiangchao</creatorcontrib><creatorcontrib>Ho, Yo-Sung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hangwei</au><au>Shao, Feng</au><au>Chai, Xiongli</au><au>Gu, Yuese</au><au>Jiang, Qiuping</au><au>Meng, Xiangchao</au><au>Ho, Yo-Sung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>33</volume><issue>7</issue><spage>3055</spage><epage>3070</epage><pages>3055-3070</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Arbitrary neural style transfer is a vital topic with great research value and wide industrial application, which strives to render the structure of one image using the style of another. Recent researches have devoted great efforts on the task of arbitrary style transfer (AST) for improving the stylization quality. However, there are very few explorations about the quality evaluation of AST images, even it can potentially guide the design of different algorithms. In this paper, we first construct a new AST images quality assessment database (AST-IQAD), which consists 150 content-style image pairs and the corresponding 1200 stylized images produced by eight typical AST algorithms. Then, a subjective study is conducted on our AST-IQAD database, which obtains the subjective rating scores of all stylized images on the three subjective evaluations, i.e., content preservation (CP), style resemblance (SR), and overall vision (OV). To quantitatively measure the quality of AST image, we propose a new sparse representation-based method, which computes the quality according to the sparse feature similarity. Experimental results on our AST-IQAD have demonstrated the superiority of the proposed method. The dataset and source code will be released at https://github.com/Hangwei-Chen/AST-IQAD-SRQE</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2022.3231041</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6025-9343</orcidid><orcidid>https://orcid.org/0000-0002-2495-9924</orcidid><orcidid>https://orcid.org/0000-0002-4245-5391</orcidid><orcidid>https://orcid.org/0000-0002-7220-1034</orcidid><orcidid>https://orcid.org/0000-0002-3756-2029</orcidid><orcidid>https://orcid.org/0000-0002-7405-3143</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2023-07, Vol.33 (7), p.3055-3070 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_proquest_journals_2831521536 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithms Arbitrary style transfer (AST) content preservation (CP) Image quality image quality assessment (IQA) Industrial applications Measurement Neural networks overall vision (OV) Q-factor Quality assessment Source code sparse coding sparse feature similarity style resemblance (SR) Task analysis |
title | Quality Evaluation of Arbitrary Style Transfer: Subjective Study and Objective Metric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20Evaluation%20of%20Arbitrary%20Style%20Transfer:%20Subjective%20Study%20and%20Objective%20Metric&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Chen,%20Hangwei&rft.date=2023-07-01&rft.volume=33&rft.issue=7&rft.spage=3055&rft.epage=3070&rft.pages=3055-3070&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2022.3231041&rft_dat=%3Cproquest_RIE%3E2831521536%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831521536&rft_id=info:pmid/&rft_ieee_id=9994780&rfr_iscdi=true |