Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks

The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (13), p.1-1
Hauptverfasser: Liu, Wei, Zhang, Ke, Xie, Jian, Xia, Yu, Mao, Jing, Xu, Ming, Hu, Shunren, Huang, Daqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 13
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Liu, Wei
Zhang, Ke
Xie, Jian
Xia, Yu
Mao, Jing
Xu, Ming
Hu, Shunren
Huang, Daqing
description The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.
doi_str_mv 10.1109/JSEN.2023.3275219
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831508364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127619</ieee_id><sourcerecordid>2831508364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNnbpKm7aOM-o86J070LXRpItm6piYdY9_elu3Bp3PgnHMv_BC6BjIBINndy0c-m1BC2YTRJKaQnaARxHEaQcLT08EzEnGWfJ-jixBWhECWxMkILfLabmxTdrb5wa9l2w6ae-88dgYXtlnj921Z226P515XVnXWNdj0ceF2eO522uMv63WtQ8Az3e2cX4dLdGbKOuiro47R50O-mD5Fxdvj8_S-iBTloosgViyLEyB0KSojQFeGV4ZqzrjhNIWSxAyY4VyVlRBCqRIgBUKWRvBEZRkbo9vD3da7360OnVy5rW_6l5KmDGKSMsH7FhxayrsQvDay9XZT-r0EIgd4coAnB3jyCK_f3Bw2Vmv9rw80EX38B1DLaq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508364</pqid></control><display><type>article</type><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</creator><creatorcontrib>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</creatorcontrib><description>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3275219</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Computational modeling ; Errors ; Fluctuations ; link quality prediction ; Low power wireless network ; Machine learning ; Mapping ; mapping error ; Mathematical models ; packet reception ratio ; Parameters ; Physical layer ; physical layer parameter ; prediction error ; Prediction models ; Predictions ; Predictive models ; Sensors ; Signal to noise ratio ; Windows (intervals) ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</cites><orcidid>0000-0001-9342-4838 ; 0000-0001-7488-0491 ; 0000-0002-1097-4314 ; 0000-0002-7892-3417 ; 0009-0005-8620-2790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10127619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Hu, Shunren</creatorcontrib><creatorcontrib>Huang, Daqing</creatorcontrib><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Errors</subject><subject>Fluctuations</subject><subject>link quality prediction</subject><subject>Low power wireless network</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>mapping error</subject><subject>Mathematical models</subject><subject>packet reception ratio</subject><subject>Parameters</subject><subject>Physical layer</subject><subject>physical layer parameter</subject><subject>prediction error</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Windows (intervals)</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNnbpKm7aOM-o86J070LXRpItm6piYdY9_elu3Bp3PgnHMv_BC6BjIBINndy0c-m1BC2YTRJKaQnaARxHEaQcLT08EzEnGWfJ-jixBWhECWxMkILfLabmxTdrb5wa9l2w6ae-88dgYXtlnj921Z226P515XVnXWNdj0ceF2eO522uMv63WtQ8Az3e2cX4dLdGbKOuiro47R50O-mD5Fxdvj8_S-iBTloosgViyLEyB0KSojQFeGV4ZqzrjhNIWSxAyY4VyVlRBCqRIgBUKWRvBEZRkbo9vD3da7360OnVy5rW_6l5KmDGKSMsH7FhxayrsQvDay9XZT-r0EIgd4coAnB3jyCK_f3Bw2Vmv9rw80EX38B1DLaq0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liu, Wei</creator><creator>Zhang, Ke</creator><creator>Xie, Jian</creator><creator>Xia, Yu</creator><creator>Mao, Jing</creator><creator>Xu, Ming</creator><creator>Hu, Shunren</creator><creator>Huang, Daqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9342-4838</orcidid><orcidid>https://orcid.org/0000-0001-7488-0491</orcidid><orcidid>https://orcid.org/0000-0002-1097-4314</orcidid><orcidid>https://orcid.org/0000-0002-7892-3417</orcidid><orcidid>https://orcid.org/0009-0005-8620-2790</orcidid></search><sort><creationdate>20230701</creationdate><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><author>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Errors</topic><topic>Fluctuations</topic><topic>link quality prediction</topic><topic>Low power wireless network</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>mapping error</topic><topic>Mathematical models</topic><topic>packet reception ratio</topic><topic>Parameters</topic><topic>Physical layer</topic><topic>physical layer parameter</topic><topic>prediction error</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Windows (intervals)</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Hu, Shunren</creatorcontrib><creatorcontrib>Huang, Daqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Wei</au><au>Zhang, Ke</au><au>Xie, Jian</au><au>Xia, Yu</au><au>Mao, Jing</au><au>Xu, Ming</au><au>Hu, Shunren</au><au>Huang, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3275219</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9342-4838</orcidid><orcidid>https://orcid.org/0000-0001-7488-0491</orcidid><orcidid>https://orcid.org/0000-0002-1097-4314</orcidid><orcidid>https://orcid.org/0000-0002-7892-3417</orcidid><orcidid>https://orcid.org/0009-0005-8620-2790</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2831508364
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Computational modeling
Errors
Fluctuations
link quality prediction
Low power wireless network
Machine learning
Mapping
mapping error
Mathematical models
packet reception ratio
Parameters
Physical layer
physical layer parameter
prediction error
Prediction models
Predictions
Predictive models
Sensors
Signal to noise ratio
Windows (intervals)
Wireless networks
Wireless sensor networks
title Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20Mapping%20Error%20of%20Link%20Quality%20Prediction%20for%20Low%20Power%20Wireless%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Wei&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3275219&rft_dat=%3Cproquest_RIE%3E2831508364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831508364&rft_id=info:pmid/&rft_ieee_id=10127619&rfr_iscdi=true