Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks
The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy whi...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-07, Vol.23 (13), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 13 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Liu, Wei Zhang, Ke Xie, Jian Xia, Yu Mao, Jing Xu, Ming Hu, Shunren Huang, Daqing |
description | The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones. |
doi_str_mv | 10.1109/JSEN.2023.3275219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831508364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10127619</ieee_id><sourcerecordid>2831508364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNnbpKm7aOM-o86J070LXRpItm6piYdY9_elu3Bp3PgnHMv_BC6BjIBINndy0c-m1BC2YTRJKaQnaARxHEaQcLT08EzEnGWfJ-jixBWhECWxMkILfLabmxTdrb5wa9l2w6ae-88dgYXtlnj921Z226P515XVnXWNdj0ceF2eO522uMv63WtQ8Az3e2cX4dLdGbKOuiro47R50O-mD5Fxdvj8_S-iBTloosgViyLEyB0KSojQFeGV4ZqzrjhNIWSxAyY4VyVlRBCqRIgBUKWRvBEZRkbo9vD3da7360OnVy5rW_6l5KmDGKSMsH7FhxayrsQvDay9XZT-r0EIgd4coAnB3jyCK_f3Bw2Vmv9rw80EX38B1DLaq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508364</pqid></control><display><type>article</type><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</creator><creatorcontrib>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</creatorcontrib><description>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3275219</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Computational modeling ; Errors ; Fluctuations ; link quality prediction ; Low power wireless network ; Machine learning ; Mapping ; mapping error ; Mathematical models ; packet reception ratio ; Parameters ; Physical layer ; physical layer parameter ; prediction error ; Prediction models ; Predictions ; Predictive models ; Sensors ; Signal to noise ratio ; Windows (intervals) ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</cites><orcidid>0000-0001-9342-4838 ; 0000-0001-7488-0491 ; 0000-0002-1097-4314 ; 0000-0002-7892-3417 ; 0009-0005-8620-2790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10127619$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10127619$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Hu, Shunren</creatorcontrib><creatorcontrib>Huang, Daqing</creatorcontrib><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational modeling</subject><subject>Errors</subject><subject>Fluctuations</subject><subject>link quality prediction</subject><subject>Low power wireless network</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>mapping error</subject><subject>Mathematical models</subject><subject>packet reception ratio</subject><subject>Parameters</subject><subject>Physical layer</subject><subject>physical layer parameter</subject><subject>prediction error</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Windows (intervals)</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOKcfQPAh4HNnbpKm7aOM-o86J070LXRpItm6piYdY9_elu3Bp3PgnHMv_BC6BjIBINndy0c-m1BC2YTRJKaQnaARxHEaQcLT08EzEnGWfJ-jixBWhECWxMkILfLabmxTdrb5wa9l2w6ae-88dgYXtlnj921Z226P515XVnXWNdj0ceF2eO522uMv63WtQ8Az3e2cX4dLdGbKOuiro47R50O-mD5Fxdvj8_S-iBTloosgViyLEyB0KSojQFeGV4ZqzrjhNIWSxAyY4VyVlRBCqRIgBUKWRvBEZRkbo9vD3da7360OnVy5rW_6l5KmDGKSMsH7FhxayrsQvDay9XZT-r0EIgd4coAnB3jyCK_f3Bw2Vmv9rw80EX38B1DLaq0</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liu, Wei</creator><creator>Zhang, Ke</creator><creator>Xie, Jian</creator><creator>Xia, Yu</creator><creator>Mao, Jing</creator><creator>Xu, Ming</creator><creator>Hu, Shunren</creator><creator>Huang, Daqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9342-4838</orcidid><orcidid>https://orcid.org/0000-0001-7488-0491</orcidid><orcidid>https://orcid.org/0000-0002-1097-4314</orcidid><orcidid>https://orcid.org/0000-0002-7892-3417</orcidid><orcidid>https://orcid.org/0009-0005-8620-2790</orcidid></search><sort><creationdate>20230701</creationdate><title>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</title><author>Liu, Wei ; Zhang, Ke ; Xie, Jian ; Xia, Yu ; Mao, Jing ; Xu, Ming ; Hu, Shunren ; Huang, Daqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-15c3957102b6df61edf4df2e434f4281a05313f44cad666cca118100bf647c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational modeling</topic><topic>Errors</topic><topic>Fluctuations</topic><topic>link quality prediction</topic><topic>Low power wireless network</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>mapping error</topic><topic>Mathematical models</topic><topic>packet reception ratio</topic><topic>Parameters</topic><topic>Physical layer</topic><topic>physical layer parameter</topic><topic>prediction error</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Windows (intervals)</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Xie, Jian</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Hu, Shunren</creatorcontrib><creatorcontrib>Huang, Daqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Wei</au><au>Zhang, Ke</au><au>Xie, Jian</au><au>Xia, Yu</au><au>Mao, Jing</au><au>Xu, Ming</au><au>Hu, Shunren</au><au>Huang, Daqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The size of time windows used by low power wireless protocols to compute packet reception ratio (PRR) directly affects the accuracy and agility of link quality prediction. Using small time windows would make the prediction more agile, but its accuracy decreases seriously. To improve the accuracy while maintaining agility, many existing methods generally predict the physical layer parameters within small time windows first and then calculate PRR using mapping models of such parameters and PRR. However, due to the propagation characteristics of wireless signal, these mapping models usually introduce large errors. The mapping error will superimpose on the prediction error of physical layer parameters, which would inevitably degrade the accuracy and reliability of PRR prediction. This paper proposes to eliminate the step of mapping from physical layer parameters to PRR and directly use the historical series of PRR computed within small time windows as input parameters to build prediction model. Then, the PRR within large time windows could be predicted. This effectively avoids the errors introduced by using mapping models while not sacrificing the agility. To verify the proposed method, several machine learning algorithms were chosen to implement the prediction model. Compared with similar methods based on mapping models, the proposed one could achieve higher accuracy under different size of time windows. Specifically, under large time windows which are commonly used to describe PRR in practice, its accuracy is much higher. More importantly, agility of the proposed method is basically equivalent or even superior to existing ones.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3275219</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9342-4838</orcidid><orcidid>https://orcid.org/0000-0001-7488-0491</orcidid><orcidid>https://orcid.org/0000-0002-1097-4314</orcidid><orcidid>https://orcid.org/0000-0002-7892-3417</orcidid><orcidid>https://orcid.org/0009-0005-8620-2790</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2831508364 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Computational modeling Errors Fluctuations link quality prediction Low power wireless network Machine learning Mapping mapping error Mathematical models packet reception ratio Parameters Physical layer physical layer parameter prediction error Prediction models Predictions Predictive models Sensors Signal to noise ratio Windows (intervals) Wireless networks Wireless sensor networks |
title | Eliminating Mapping Error of Link Quality Prediction for Low Power Wireless Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A56%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20Mapping%20Error%20of%20Link%20Quality%20Prediction%20for%20Low%20Power%20Wireless%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Liu,%20Wei&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3275219&rft_dat=%3Cproquest_RIE%3E2831508364%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831508364&rft_id=info:pmid/&rft_ieee_id=10127619&rfr_iscdi=true |