Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces

Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an ineffic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2023-07, Vol.71 (7), p.2875-2887
Hauptverfasser: Zhang, Jianan, You, Jian Wei, Feng, Feng, Na, Weicong, Lou, Zhuo Chen, Zhang, Qi-Jun, Cui, Tie Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2887
container_issue 7
container_start_page 2875
container_title IEEE transactions on microwave theory and techniques
container_volume 71
creator Zhang, Jianan
You, Jian Wei
Feng, Feng
Na, Weicong
Lou, Zhuo Chen
Zhang, Qi-Jun
Cui, Tie Jun
description Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an inefficient design process of metasurfaces. In this article, we propose a physics-driven machine-learning (ML) approach incorporating temporal coupled mode theory (CMT) to improve the design efficiency and implement an intelligent design of metasurfaces. In the proposed approach, a surrogate model (i.e., neuro-CMT model) is developed to speed up the prediction of EM responses of metasurfaces. A three-stage method is used to develop the neuro-CMT model. First, we perform full-wave EM simulations of unit cells only containing single- and double-resonators for different geometrical design parameter values. Second, we extract the single- and double-resonator CMT parameters for each geometrical parameter value by fitting the corresponding EM responses based on CMT equations. Third, we train neural networks to learn the relationships between the CMT parameters and geometrical parameters for single- and double-resonator systems, respectively. These trained neural networks, in conjunction with the multiresonator CMT equation, become an efficient tool to accurately predict the EM responses of any arbitrary coupled multiresonator systems. The proposed neuro-CMT model can be further utilized for metasurface design optimizations. Two metasurface absorbers are given as examples to demonstrate the efficient and intelligent advantages of our proposed approach.
doi_str_mv 10.1109/TMTT.2023.3238076
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831508200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10026599</ieee_id><sourcerecordid>2831508200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-47daac1cba7f42f46d75f7483e8570b88d26f6de6377a08a57bde5275dde4de33</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8SOOnWXV8pIawSKsIzcet6nSONgpUvl6HLULVjNzde-M5iB0T8mMUpI_lUVZzhhhfMYZV0RmF2hChZBJnklyiSaEUJXkqSLX6CaEXRxTQdQE_X5uj6GpQ7L0zQ90uND1tukgWYH2XdNt8LzvvYsifu9q53vn9TDKJezHvsULd-hbMLhwBnC5BeeP2Dof7QO0bbOBbsBLCM2mw87iAgYdDt7qGsIturK6DXB3rlP09fJcLt6S1cfr-2K-SmqWp0OSSqN1Teu1ljZlNs2MFFamioMSkqyVMiyzmYGMS6mJ0kKuDQgmhTGQGuB8ih5Pe-Mj3wcIQ7VzB9_FkxVTnEYMjJDooidX7V0IHmzV-2av_bGipBoRVyPiakRcnRHHzMMp0wDAPz9hmchz_gdKzHo5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831508200</pqid></control><display><type>article</type><title>Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jianan ; You, Jian Wei ; Feng, Feng ; Na, Weicong ; Lou, Zhuo Chen ; Zhang, Qi-Jun ; Cui, Tie Jun</creator><creatorcontrib>Zhang, Jianan ; You, Jian Wei ; Feng, Feng ; Na, Weicong ; Lou, Zhuo Chen ; Zhang, Qi-Jun ; Cui, Tie Jun</creatorcontrib><description>Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an inefficient design process of metasurfaces. In this article, we propose a physics-driven machine-learning (ML) approach incorporating temporal coupled mode theory (CMT) to improve the design efficiency and implement an intelligent design of metasurfaces. In the proposed approach, a surrogate model (i.e., neuro-CMT model) is developed to speed up the prediction of EM responses of metasurfaces. A three-stage method is used to develop the neuro-CMT model. First, we perform full-wave EM simulations of unit cells only containing single- and double-resonators for different geometrical design parameter values. Second, we extract the single- and double-resonator CMT parameters for each geometrical parameter value by fitting the corresponding EM responses based on CMT equations. Third, we train neural networks to learn the relationships between the CMT parameters and geometrical parameters for single- and double-resonator systems, respectively. These trained neural networks, in conjunction with the multiresonator CMT equation, become an efficient tool to accurately predict the EM responses of any arbitrary coupled multiresonator systems. The proposed neuro-CMT model can be further utilized for metasurface design optimizations. Two metasurface absorbers are given as examples to demonstrate the efficient and intelligent advantages of our proposed approach.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2023.3238076</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coupled modes ; Data models ; Design improvements ; Design optimization ; Design parameters ; Electromagnetic (EM) parametric modeling ; EM optimization ; Intelligent design ; Machine learning ; Mathematical models ; metasurface design ; Metasurfaces ; Neural networks ; Optimization ; Parametric statistics ; physics-driven machinelearning (ML) ; Resonators ; Solid modeling ; Table lookup ; temporal coupled mode theory (CMT)</subject><ispartof>IEEE transactions on microwave theory and techniques, 2023-07, Vol.71 (7), p.2875-2887</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-47daac1cba7f42f46d75f7483e8570b88d26f6de6377a08a57bde5275dde4de33</citedby><cites>FETCH-LOGICAL-c294t-47daac1cba7f42f46d75f7483e8570b88d26f6de6377a08a57bde5275dde4de33</cites><orcidid>0000-0002-3536-5777 ; 0000-0001-9775-5124 ; 0000-0002-3569-8782 ; 0000-0001-7852-5331 ; 0000-0001-5761-9507 ; 0000-0002-5862-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10026599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10026599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>You, Jian Wei</creatorcontrib><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Na, Weicong</creatorcontrib><creatorcontrib>Lou, Zhuo Chen</creatorcontrib><creatorcontrib>Zhang, Qi-Jun</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><title>Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an inefficient design process of metasurfaces. In this article, we propose a physics-driven machine-learning (ML) approach incorporating temporal coupled mode theory (CMT) to improve the design efficiency and implement an intelligent design of metasurfaces. In the proposed approach, a surrogate model (i.e., neuro-CMT model) is developed to speed up the prediction of EM responses of metasurfaces. A three-stage method is used to develop the neuro-CMT model. First, we perform full-wave EM simulations of unit cells only containing single- and double-resonators for different geometrical design parameter values. Second, we extract the single- and double-resonator CMT parameters for each geometrical parameter value by fitting the corresponding EM responses based on CMT equations. Third, we train neural networks to learn the relationships between the CMT parameters and geometrical parameters for single- and double-resonator systems, respectively. These trained neural networks, in conjunction with the multiresonator CMT equation, become an efficient tool to accurately predict the EM responses of any arbitrary coupled multiresonator systems. The proposed neuro-CMT model can be further utilized for metasurface design optimizations. Two metasurface absorbers are given as examples to demonstrate the efficient and intelligent advantages of our proposed approach.</description><subject>Coupled modes</subject><subject>Data models</subject><subject>Design improvements</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Electromagnetic (EM) parametric modeling</subject><subject>EM optimization</subject><subject>Intelligent design</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>metasurface design</subject><subject>Metasurfaces</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parametric statistics</subject><subject>physics-driven machinelearning (ML)</subject><subject>Resonators</subject><subject>Solid modeling</subject><subject>Table lookup</subject><subject>temporal coupled mode theory (CMT)</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8SOOnWXV8pIawSKsIzcet6nSONgpUvl6HLULVjNzde-M5iB0T8mMUpI_lUVZzhhhfMYZV0RmF2hChZBJnklyiSaEUJXkqSLX6CaEXRxTQdQE_X5uj6GpQ7L0zQ90uND1tukgWYH2XdNt8LzvvYsifu9q53vn9TDKJezHvsULd-hbMLhwBnC5BeeP2Dof7QO0bbOBbsBLCM2mw87iAgYdDt7qGsIturK6DXB3rlP09fJcLt6S1cfr-2K-SmqWp0OSSqN1Teu1ljZlNs2MFFamioMSkqyVMiyzmYGMS6mJ0kKuDQgmhTGQGuB8ih5Pe-Mj3wcIQ7VzB9_FkxVTnEYMjJDooidX7V0IHmzV-2av_bGipBoRVyPiakRcnRHHzMMp0wDAPz9hmchz_gdKzHo5</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Zhang, Jianan</creator><creator>You, Jian Wei</creator><creator>Feng, Feng</creator><creator>Na, Weicong</creator><creator>Lou, Zhuo Chen</creator><creator>Zhang, Qi-Jun</creator><creator>Cui, Tie Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3536-5777</orcidid><orcidid>https://orcid.org/0000-0001-9775-5124</orcidid><orcidid>https://orcid.org/0000-0002-3569-8782</orcidid><orcidid>https://orcid.org/0000-0001-7852-5331</orcidid><orcidid>https://orcid.org/0000-0001-5761-9507</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></search><sort><creationdate>20230701</creationdate><title>Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces</title><author>Zhang, Jianan ; You, Jian Wei ; Feng, Feng ; Na, Weicong ; Lou, Zhuo Chen ; Zhang, Qi-Jun ; Cui, Tie Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-47daac1cba7f42f46d75f7483e8570b88d26f6de6377a08a57bde5275dde4de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Coupled modes</topic><topic>Data models</topic><topic>Design improvements</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Electromagnetic (EM) parametric modeling</topic><topic>EM optimization</topic><topic>Intelligent design</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>metasurface design</topic><topic>Metasurfaces</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parametric statistics</topic><topic>physics-driven machinelearning (ML)</topic><topic>Resonators</topic><topic>Solid modeling</topic><topic>Table lookup</topic><topic>temporal coupled mode theory (CMT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jianan</creatorcontrib><creatorcontrib>You, Jian Wei</creatorcontrib><creatorcontrib>Feng, Feng</creatorcontrib><creatorcontrib>Na, Weicong</creatorcontrib><creatorcontrib>Lou, Zhuo Chen</creatorcontrib><creatorcontrib>Zhang, Qi-Jun</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jianan</au><au>You, Jian Wei</au><au>Feng, Feng</au><au>Na, Weicong</au><au>Lou, Zhuo Chen</au><au>Zhang, Qi-Jun</au><au>Cui, Tie Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>71</volume><issue>7</issue><spage>2875</spage><epage>2887</epage><pages>2875-2887</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Metasurfaces find a wide variety of applications in the last decades due to their powerful ability to manipulate electromagnetic (EM) waves. Traditional approaches for metasurface design require massive full-wave EM simulations to achieve optimal geometrical parameter values, resulting in an inefficient design process of metasurfaces. In this article, we propose a physics-driven machine-learning (ML) approach incorporating temporal coupled mode theory (CMT) to improve the design efficiency and implement an intelligent design of metasurfaces. In the proposed approach, a surrogate model (i.e., neuro-CMT model) is developed to speed up the prediction of EM responses of metasurfaces. A three-stage method is used to develop the neuro-CMT model. First, we perform full-wave EM simulations of unit cells only containing single- and double-resonators for different geometrical design parameter values. Second, we extract the single- and double-resonator CMT parameters for each geometrical parameter value by fitting the corresponding EM responses based on CMT equations. Third, we train neural networks to learn the relationships between the CMT parameters and geometrical parameters for single- and double-resonator systems, respectively. These trained neural networks, in conjunction with the multiresonator CMT equation, become an efficient tool to accurately predict the EM responses of any arbitrary coupled multiresonator systems. The proposed neuro-CMT model can be further utilized for metasurface design optimizations. Two metasurface absorbers are given as examples to demonstrate the efficient and intelligent advantages of our proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2023.3238076</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3536-5777</orcidid><orcidid>https://orcid.org/0000-0001-9775-5124</orcidid><orcidid>https://orcid.org/0000-0002-3569-8782</orcidid><orcidid>https://orcid.org/0000-0001-7852-5331</orcidid><orcidid>https://orcid.org/0000-0001-5761-9507</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2023-07, Vol.71 (7), p.2875-2887
issn 0018-9480
1557-9670
language eng
recordid cdi_proquest_journals_2831508200
source IEEE Electronic Library (IEL)
subjects Coupled modes
Data models
Design improvements
Design optimization
Design parameters
Electromagnetic (EM) parametric modeling
EM optimization
Intelligent design
Machine learning
Mathematical models
metasurface design
Metasurfaces
Neural networks
Optimization
Parametric statistics
physics-driven machinelearning (ML)
Resonators
Solid modeling
Table lookup
temporal coupled mode theory (CMT)
title Physics-Driven Machine-Learning Approach Incorporating Temporal Coupled Mode Theory for Intelligent Design of Metasurfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics-Driven%20Machine-Learning%20Approach%20Incorporating%20Temporal%20Coupled%20Mode%20Theory%20for%20Intelligent%20Design%20of%20Metasurfaces&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Zhang,%20Jianan&rft.date=2023-07-01&rft.volume=71&rft.issue=7&rft.spage=2875&rft.epage=2887&rft.pages=2875-2887&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2023.3238076&rft_dat=%3Cproquest_RIE%3E2831508200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831508200&rft_id=info:pmid/&rft_ieee_id=10026599&rfr_iscdi=true