A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification
With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is wi...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-07, Vol.23 (13), p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 13 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Wang, Ruofei Zhao, Heng Hua, Dengxin Li, Jiaqi Wang, Xingbo Ji, Feng |
description | With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system. |
doi_str_mv | 10.1109/JSEN.2023.3277847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831507896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10134525</ieee_id><sourcerecordid>2831507896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFO8dpOnHCrqvKnCg6AxC1yko1wSeNgO5S-PY7aA6ddab6ZXU0UXQKdAdD85ul1-TxjlPEZZ1JmQh5FE0iSLAYpsuNx5zQWXH6cRmfOrSmFXCZyEv3OyY-2flAt0ZteVd7YuFQOa9Ib61XZIjG911XQHXbOWLLV_pP01pSq1K12QSMdDjYAHfqtsV-3pAlYr2yQgj2gPVq_I7rGzusmZHltuvPopFGtw4vDnEbvd8u3xUO8erl_XMxXccVy4eMSMFE1pBJYkokKZQ2M8wy5rJGCTKFRaS7KTEIpqrRitaQIASmZyjmVgk-j631u-ON7QOeLtRlsF04WLOOQUJnlaaBgT1XWOGexKXqrN8ruCqDFWHAxFlyMBReHgoPnau_RiPiPBy4SlvA_7VB5eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507896</pqid></control><display><type>article</type><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</creator><creatorcontrib>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</creatorcontrib><description>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3277847</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Eigenvalues ; Entropy ; Feature extraction ; Image acquisition ; Kurtosis ; Light scattering ; Neural networks ; Optical measuring instruments ; Optical properties ; Particle property identification ; Particle size ; Particulate emissions ; Portability ; Portable Sensor ; Probabilistic neural network ; Sensors ; Virtual impactor</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</citedby><cites>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</cites><orcidid>0000-0003-0605-9663 ; 0000-0003-0480-5079 ; 0000-0002-7562-0496 ; 0000-0002-6977-0594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10134525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10134525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruofei</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Hua, Dengxin</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Wang, Xingbo</creatorcontrib><creatorcontrib>Ji, Feng</creatorcontrib><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</description><subject>Design optimization</subject><subject>Eigenvalues</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Kurtosis</subject><subject>Light scattering</subject><subject>Neural networks</subject><subject>Optical measuring instruments</subject><subject>Optical properties</subject><subject>Particle property identification</subject><subject>Particle size</subject><subject>Particulate emissions</subject><subject>Portability</subject><subject>Portable Sensor</subject><subject>Probabilistic neural network</subject><subject>Sensors</subject><subject>Virtual impactor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFO8dpOnHCrqvKnCg6AxC1yko1wSeNgO5S-PY7aA6ddab6ZXU0UXQKdAdD85ul1-TxjlPEZZ1JmQh5FE0iSLAYpsuNx5zQWXH6cRmfOrSmFXCZyEv3OyY-2flAt0ZteVd7YuFQOa9Ib61XZIjG911XQHXbOWLLV_pP01pSq1K12QSMdDjYAHfqtsV-3pAlYr2yQgj2gPVq_I7rGzusmZHltuvPopFGtw4vDnEbvd8u3xUO8erl_XMxXccVy4eMSMFE1pBJYkokKZQ2M8wy5rJGCTKFRaS7KTEIpqrRitaQIASmZyjmVgk-j631u-ON7QOeLtRlsF04WLOOQUJnlaaBgT1XWOGexKXqrN8ruCqDFWHAxFlyMBReHgoPnau_RiPiPBy4SlvA_7VB5eg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Ruofei</creator><creator>Zhao, Heng</creator><creator>Hua, Dengxin</creator><creator>Li, Jiaqi</creator><creator>Wang, Xingbo</creator><creator>Ji, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0605-9663</orcidid><orcidid>https://orcid.org/0000-0003-0480-5079</orcidid><orcidid>https://orcid.org/0000-0002-7562-0496</orcidid><orcidid>https://orcid.org/0000-0002-6977-0594</orcidid></search><sort><creationdate>20230701</creationdate><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><author>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eigenvalues</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Kurtosis</topic><topic>Light scattering</topic><topic>Neural networks</topic><topic>Optical measuring instruments</topic><topic>Optical properties</topic><topic>Particle property identification</topic><topic>Particle size</topic><topic>Particulate emissions</topic><topic>Portability</topic><topic>Portable Sensor</topic><topic>Probabilistic neural network</topic><topic>Sensors</topic><topic>Virtual impactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruofei</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Hua, Dengxin</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Wang, Xingbo</creatorcontrib><creatorcontrib>Ji, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruofei</au><au>Zhao, Heng</au><au>Hua, Dengxin</au><au>Li, Jiaqi</au><au>Wang, Xingbo</au><au>Ji, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3277847</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0605-9663</orcidid><orcidid>https://orcid.org/0000-0003-0480-5079</orcidid><orcidid>https://orcid.org/0000-0002-7562-0496</orcidid><orcidid>https://orcid.org/0000-0002-6977-0594</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2831507896 |
source | IEEE Electronic Library (IEL) |
subjects | Design optimization Eigenvalues Entropy Feature extraction Image acquisition Kurtosis Light scattering Neural networks Optical measuring instruments Optical properties Particle property identification Particle size Particulate emissions Portability Portable Sensor Probabilistic neural network Sensors Virtual impactor |
title | A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20virtual%20impactor-based%20portable%20optical%20sensor%20with%20probabilistic%20neural%20network:%20for%20particle%20property%20identification&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Ruofei&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3277847&rft_dat=%3Cproquest_RIE%3E2831507896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507896&rft_id=info:pmid/&rft_ieee_id=10134525&rfr_iscdi=true |