A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification

With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (13), p.1-1
Hauptverfasser: Wang, Ruofei, Zhao, Heng, Hua, Dengxin, Li, Jiaqi, Wang, Xingbo, Ji, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 13
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Wang, Ruofei
Zhao, Heng
Hua, Dengxin
Li, Jiaqi
Wang, Xingbo
Ji, Feng
description With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.
doi_str_mv 10.1109/JSEN.2023.3277847
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831507896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10134525</ieee_id><sourcerecordid>2831507896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFO8dpOnHCrqvKnCg6AxC1yko1wSeNgO5S-PY7aA6ddab6ZXU0UXQKdAdD85ul1-TxjlPEZZ1JmQh5FE0iSLAYpsuNx5zQWXH6cRmfOrSmFXCZyEv3OyY-2flAt0ZteVd7YuFQOa9Ib61XZIjG911XQHXbOWLLV_pP01pSq1K12QSMdDjYAHfqtsV-3pAlYr2yQgj2gPVq_I7rGzusmZHltuvPopFGtw4vDnEbvd8u3xUO8erl_XMxXccVy4eMSMFE1pBJYkokKZQ2M8wy5rJGCTKFRaS7KTEIpqrRitaQIASmZyjmVgk-j631u-ON7QOeLtRlsF04WLOOQUJnlaaBgT1XWOGexKXqrN8ruCqDFWHAxFlyMBReHgoPnau_RiPiPBy4SlvA_7VB5eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507896</pqid></control><display><type>article</type><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</creator><creatorcontrib>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</creatorcontrib><description>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3277847</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Eigenvalues ; Entropy ; Feature extraction ; Image acquisition ; Kurtosis ; Light scattering ; Neural networks ; Optical measuring instruments ; Optical properties ; Particle property identification ; Particle size ; Particulate emissions ; Portability ; Portable Sensor ; Probabilistic neural network ; Sensors ; Virtual impactor</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</citedby><cites>FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</cites><orcidid>0000-0003-0605-9663 ; 0000-0003-0480-5079 ; 0000-0002-7562-0496 ; 0000-0002-6977-0594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10134525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10134525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Ruofei</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Hua, Dengxin</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Wang, Xingbo</creatorcontrib><creatorcontrib>Ji, Feng</creatorcontrib><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</description><subject>Design optimization</subject><subject>Eigenvalues</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Kurtosis</subject><subject>Light scattering</subject><subject>Neural networks</subject><subject>Optical measuring instruments</subject><subject>Optical properties</subject><subject>Particle property identification</subject><subject>Particle size</subject><subject>Particulate emissions</subject><subject>Portability</subject><subject>Portable Sensor</subject><subject>Probabilistic neural network</subject><subject>Sensors</subject><subject>Virtual impactor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhCMEEqXwAEgcLHFO8dpOnHCrqvKnCg6AxC1yko1wSeNgO5S-PY7aA6ddab6ZXU0UXQKdAdD85ul1-TxjlPEZZ1JmQh5FE0iSLAYpsuNx5zQWXH6cRmfOrSmFXCZyEv3OyY-2flAt0ZteVd7YuFQOa9Ib61XZIjG911XQHXbOWLLV_pP01pSq1K12QSMdDjYAHfqtsV-3pAlYr2yQgj2gPVq_I7rGzusmZHltuvPopFGtw4vDnEbvd8u3xUO8erl_XMxXccVy4eMSMFE1pBJYkokKZQ2M8wy5rJGCTKFRaS7KTEIpqrRitaQIASmZyjmVgk-j631u-ON7QOeLtRlsF04WLOOQUJnlaaBgT1XWOGexKXqrN8ruCqDFWHAxFlyMBReHgoPnau_RiPiPBy4SlvA_7VB5eg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Ruofei</creator><creator>Zhao, Heng</creator><creator>Hua, Dengxin</creator><creator>Li, Jiaqi</creator><creator>Wang, Xingbo</creator><creator>Ji, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0605-9663</orcidid><orcidid>https://orcid.org/0000-0003-0480-5079</orcidid><orcidid>https://orcid.org/0000-0002-7562-0496</orcidid><orcidid>https://orcid.org/0000-0002-6977-0594</orcidid></search><sort><creationdate>20230701</creationdate><title>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</title><author>Wang, Ruofei ; Zhao, Heng ; Hua, Dengxin ; Li, Jiaqi ; Wang, Xingbo ; Ji, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b1e5ad16712584ce7d12338e37de01761fa694b871b4c6c2d70e1123b2a930743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Design optimization</topic><topic>Eigenvalues</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Kurtosis</topic><topic>Light scattering</topic><topic>Neural networks</topic><topic>Optical measuring instruments</topic><topic>Optical properties</topic><topic>Particle property identification</topic><topic>Particle size</topic><topic>Particulate emissions</topic><topic>Portability</topic><topic>Portable Sensor</topic><topic>Probabilistic neural network</topic><topic>Sensors</topic><topic>Virtual impactor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ruofei</creatorcontrib><creatorcontrib>Zhao, Heng</creatorcontrib><creatorcontrib>Hua, Dengxin</creatorcontrib><creatorcontrib>Li, Jiaqi</creatorcontrib><creatorcontrib>Wang, Xingbo</creatorcontrib><creatorcontrib>Ji, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Ruofei</au><au>Zhao, Heng</au><au>Hua, Dengxin</au><au>Li, Jiaqi</au><au>Wang, Xingbo</au><au>Ji, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With the increasing problem of atmospheric particulate matter pollution, an increasing number of scholars have conducted studies related to particulate matter. Most of the research on particulate matter has focused on information measurement such as particle size, where light scattering method is widely used in the field of particulate matter measurement. Numerous studies have shown that the particle properties have a great influence on the measurement accuracy of light scattering method. However, there are relatively few studies related to the identification of particle properties. Therefore, according to the difference of particle signals with different properties, this paper proposes a new method of particle property identification based on probabilistic neural network. Also, a new portable light scattering sensor integrated with virtual impactor is designed for particle signal acquisition. In the particle signal feature extraction session, we innovatively select Image entropy, kurtosis and sample entropy of discrete wavelet approximation signal as eigenvalues of the particle signal. The experimental results show that the virtual impactor has a good separation with a cutting particle size of 2.67 μm. The designed new portable light scattering sensor has good performance which can realize the task of particle light scattering signal acquisition. Meanwhile, the proposed new method of particle property identification has a 99% correct classification rate. In future work, we will further optimize the design of portable sensors and thus reduce the specifications of the measurement system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3277847</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0605-9663</orcidid><orcidid>https://orcid.org/0000-0003-0480-5079</orcidid><orcidid>https://orcid.org/0000-0002-7562-0496</orcidid><orcidid>https://orcid.org/0000-0002-6977-0594</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2831507896
source IEEE Electronic Library (IEL)
subjects Design optimization
Eigenvalues
Entropy
Feature extraction
Image acquisition
Kurtosis
Light scattering
Neural networks
Optical measuring instruments
Optical properties
Particle property identification
Particle size
Particulate emissions
Portability
Portable Sensor
Probabilistic neural network
Sensors
Virtual impactor
title A virtual impactor-based portable optical sensor with probabilistic neural network: for particle property identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20virtual%20impactor-based%20portable%20optical%20sensor%20with%20probabilistic%20neural%20network:%20for%20particle%20property%20identification&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Ruofei&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3277847&rft_dat=%3Cproquest_RIE%3E2831507896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507896&rft_id=info:pmid/&rft_ieee_id=10134525&rfr_iscdi=true