Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement

In this epoch of the Internet of Things, devices that scavenge mechanical energy and convert it into usable electrical energy are in high demand. Moreover, biomechanical energy harvesting from human motion is a very promising and clean method for powering wearable gadgets. Here a highly flexible tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (13), p.1-1
Hauptverfasser: Varghese, Harris, Athira, B.S., Chandran, Achu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 13
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Varghese, Harris
Athira, B.S.
Chandran, Achu
description In this epoch of the Internet of Things, devices that scavenge mechanical energy and convert it into usable electrical energy are in high demand. Moreover, biomechanical energy harvesting from human motion is a very promising and clean method for powering wearable gadgets. Here a highly flexible triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) nanofibers with paper as counter material is fabricated. The assembled triboelectric nanogenerator displayed excellent output electrical performances consisting of an output voltage of 430 V, a short circuit current density of 0.9 mA/m 2 , and a peak power density of 0.6 W/m 2 . The flexible TENG device is capable of powering different electronic gadgets such as a calculator and digital thermometer. Additionally, the capability of the same to harness biomechanical energy effectively from human motion, such as finger tapping, wrist flexion, and elbow bending, is demonstrated, which can be effectively used in telerehabilitation.
doi_str_mv 10.1109/JSEN.2023.3271663
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2831507776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10117549</ieee_id><sourcerecordid>2831507776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-744d21d0cddfcc4adb9c0d848cb51bfca602d1b64d5bbab4f95e4eddcb7d0b053</originalsourceid><addsrcrecordid>eNpNkM1OwkAQxxujiYg-gImHTTwXd9vdbnsUBKtBNBGNt2Y_prCk7OK2EHkSX9dWPHiaSf4fM_kFwSXBA0JwdvP4Op4NIhzFgzjiJEnio6BHGEtDwml63O0xDmnMP06Ds7peYUwyzngv-M7NYlnt0aSCLyMrQHNvpIMKVOONQjNh3QIseNE4j6SoQSNn0cv73eRXK40EX6OyFYfGrUEthTVKVGjcZhZ7lAu_g7oxdoGE1WjeFntYCmkq04jGtFU7I1C-XQuLhk7v0ZPbwRpscx6clKKq4eJv9oO3yXg-ysPp8_3D6HYaqiijTcgp1RHRWGldKkWFlpnCOqWpkozIUokER5rIhGompZC0zBhQ0FpJrrHELO4H14fejXef2_bVYuW23rYniyiNCcOc86R1kYNLeVfXHspi481a-H1BcNHxLzr-Rce_-OPfZq4OGQMA__yEcEaz-AeHy4YM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507776</pqid></control><display><type>article</type><title>Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement</title><source>IEEE Electronic Library (IEL)</source><creator>Varghese, Harris ; Athira, B.S. ; Chandran, Achu</creator><creatorcontrib>Varghese, Harris ; Athira, B.S. ; Chandran, Achu</creatorcontrib><description>In this epoch of the Internet of Things, devices that scavenge mechanical energy and convert it into usable electrical energy are in high demand. Moreover, biomechanical energy harvesting from human motion is a very promising and clean method for powering wearable gadgets. Here a highly flexible triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) nanofibers with paper as counter material is fabricated. The assembled triboelectric nanogenerator displayed excellent output electrical performances consisting of an output voltage of 430 V, a short circuit current density of 0.9 mA/m 2 , and a peak power density of 0.6 W/m 2 . The flexible TENG device is capable of powering different electronic gadgets such as a calculator and digital thermometer. Additionally, the capability of the same to harness biomechanical energy effectively from human motion, such as finger tapping, wrist flexion, and elbow bending, is demonstrated, which can be effectively used in telerehabilitation.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3271663</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomechanical Energy Harvesting ; Biomechanics ; Circuits ; Clean energy ; Electrospun PVDF ; Energy harvesting ; Force ; Human motion ; Human Motion Sensing ; Internet of Things ; Mechanical sensors ; Nanofibers ; Nanogenerators ; Polyvinylidene fluorides ; Sensors ; Short circuit currents ; Surface morphology ; Telerehabilitation ; TENG ; Triboelectricity ; Wrist</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-744d21d0cddfcc4adb9c0d848cb51bfca602d1b64d5bbab4f95e4eddcb7d0b053</citedby><cites>FETCH-LOGICAL-c294t-744d21d0cddfcc4adb9c0d848cb51bfca602d1b64d5bbab4f95e4eddcb7d0b053</cites><orcidid>0000-0001-9852-730X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10117549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10117549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Varghese, Harris</creatorcontrib><creatorcontrib>Athira, B.S.</creatorcontrib><creatorcontrib>Chandran, Achu</creatorcontrib><title>Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this epoch of the Internet of Things, devices that scavenge mechanical energy and convert it into usable electrical energy are in high demand. Moreover, biomechanical energy harvesting from human motion is a very promising and clean method for powering wearable gadgets. Here a highly flexible triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) nanofibers with paper as counter material is fabricated. The assembled triboelectric nanogenerator displayed excellent output electrical performances consisting of an output voltage of 430 V, a short circuit current density of 0.9 mA/m 2 , and a peak power density of 0.6 W/m 2 . The flexible TENG device is capable of powering different electronic gadgets such as a calculator and digital thermometer. Additionally, the capability of the same to harness biomechanical energy effectively from human motion, such as finger tapping, wrist flexion, and elbow bending, is demonstrated, which can be effectively used in telerehabilitation.</description><subject>Biomechanical Energy Harvesting</subject><subject>Biomechanics</subject><subject>Circuits</subject><subject>Clean energy</subject><subject>Electrospun PVDF</subject><subject>Energy harvesting</subject><subject>Force</subject><subject>Human motion</subject><subject>Human Motion Sensing</subject><subject>Internet of Things</subject><subject>Mechanical sensors</subject><subject>Nanofibers</subject><subject>Nanogenerators</subject><subject>Polyvinylidene fluorides</subject><subject>Sensors</subject><subject>Short circuit currents</subject><subject>Surface morphology</subject><subject>Telerehabilitation</subject><subject>TENG</subject><subject>Triboelectricity</subject><subject>Wrist</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwkAQxxujiYg-gImHTTwXd9vdbnsUBKtBNBGNt2Y_prCk7OK2EHkSX9dWPHiaSf4fM_kFwSXBA0JwdvP4Op4NIhzFgzjiJEnio6BHGEtDwml63O0xDmnMP06Ds7peYUwyzngv-M7NYlnt0aSCLyMrQHNvpIMKVOONQjNh3QIseNE4j6SoQSNn0cv73eRXK40EX6OyFYfGrUEthTVKVGjcZhZ7lAu_g7oxdoGE1WjeFntYCmkq04jGtFU7I1C-XQuLhk7v0ZPbwRpscx6clKKq4eJv9oO3yXg-ysPp8_3D6HYaqiijTcgp1RHRWGldKkWFlpnCOqWpkozIUokER5rIhGompZC0zBhQ0FpJrrHELO4H14fejXef2_bVYuW23rYniyiNCcOc86R1kYNLeVfXHspi481a-H1BcNHxLzr-Rce_-OPfZq4OGQMA__yEcEaz-AeHy4YM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Varghese, Harris</creator><creator>Athira, B.S.</creator><creator>Chandran, Achu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9852-730X</orcidid></search><sort><creationdate>20230701</creationdate><title>Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement</title><author>Varghese, Harris ; Athira, B.S. ; Chandran, Achu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-744d21d0cddfcc4adb9c0d848cb51bfca602d1b64d5bbab4f95e4eddcb7d0b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biomechanical Energy Harvesting</topic><topic>Biomechanics</topic><topic>Circuits</topic><topic>Clean energy</topic><topic>Electrospun PVDF</topic><topic>Energy harvesting</topic><topic>Force</topic><topic>Human motion</topic><topic>Human Motion Sensing</topic><topic>Internet of Things</topic><topic>Mechanical sensors</topic><topic>Nanofibers</topic><topic>Nanogenerators</topic><topic>Polyvinylidene fluorides</topic><topic>Sensors</topic><topic>Short circuit currents</topic><topic>Surface morphology</topic><topic>Telerehabilitation</topic><topic>TENG</topic><topic>Triboelectricity</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varghese, Harris</creatorcontrib><creatorcontrib>Athira, B.S.</creatorcontrib><creatorcontrib>Chandran, Achu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Varghese, Harris</au><au>Athira, B.S.</au><au>Chandran, Achu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this epoch of the Internet of Things, devices that scavenge mechanical energy and convert it into usable electrical energy are in high demand. Moreover, biomechanical energy harvesting from human motion is a very promising and clean method for powering wearable gadgets. Here a highly flexible triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) nanofibers with paper as counter material is fabricated. The assembled triboelectric nanogenerator displayed excellent output electrical performances consisting of an output voltage of 430 V, a short circuit current density of 0.9 mA/m 2 , and a peak power density of 0.6 W/m 2 . The flexible TENG device is capable of powering different electronic gadgets such as a calculator and digital thermometer. Additionally, the capability of the same to harness biomechanical energy effectively from human motion, such as finger tapping, wrist flexion, and elbow bending, is demonstrated, which can be effectively used in telerehabilitation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3271663</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9852-730X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2831507776
source IEEE Electronic Library (IEL)
subjects Biomechanical Energy Harvesting
Biomechanics
Circuits
Clean energy
Electrospun PVDF
Energy harvesting
Force
Human motion
Human Motion Sensing
Internet of Things
Mechanical sensors
Nanofibers
Nanogenerators
Polyvinylidene fluorides
Sensors
Short circuit currents
Surface morphology
Telerehabilitation
TENG
Triboelectricity
Wrist
title Highly Flexible Triboelectric Nanogenerator based on PVDF Nanofibers for Biomechanical Energy Harvesting and Telerehabilitation via Human Body Movement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Flexible%20Triboelectric%20Nanogenerator%20based%20on%20PVDF%20Nanofibers%20for%20Biomechanical%20Energy%20Harvesting%20and%20Telerehabilitation%20via%20Human%20Body%20Movement&rft.jtitle=IEEE%20sensors%20journal&rft.au=Varghese,%20Harris&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3271663&rft_dat=%3Cproquest_RIE%3E2831507776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507776&rft_id=info:pmid/&rft_ieee_id=10117549&rfr_iscdi=true