Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models
This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification...
Gespeichert in:
Veröffentlicht in: | IEEE journal of emerging and selected topics in industrial electronics (Print) 2023-07, Vol.4 (3), p.844-854 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | 3 |
container_start_page | 844 |
container_title | IEEE journal of emerging and selected topics in industrial electronics (Print) |
container_volume | 4 |
creator | Pop, Adrian-Cornel Cai, Zhaofeng Gyselinck, Johan J. C. |
description | This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost. |
doi_str_mv | 10.1109/JESTIE.2023.3252404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831507663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831507663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</originalsourceid><addsrcrecordid>eNo9kN1qwkAQhUNpoWJ9gt4s9Dp2fxNzKRKtRRFaex0mm4muxI3djQV70z5En7BP0gSlVzOcOecMfEFwz-iQMZo8Pqev63k65JSLoeCKSyqvgh6PRnGYxFJc_-9C3QYD73eUUq4YZ1T2gq8l6K2xGC4QnDV2Q8amwIIsj1Vj6nyHujEfSFaHxuzNJ7SaJXVJ0qo9OKPJJe5_v3_IDOs9dmo4RfAmN5VpTgRsQVK7Bavb2hfcOPS-a1nWBVb-LrgpofI4uMx-8DZN15OncLGazSfjRag5jZswKUqp4zwSKBAE5IgsiWMQHJRQDLQqNUgJnI9EXuQCVMxYApHQsshHowRFP3g49x5c_X5E32S7-uhs-zJrM0zROIpE6xJnl3a19w7L7ODMHtwpYzTrYGdn2FkHO7vAFn8iYHW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507663</pqid></control><display><type>article</type><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><source>IEEE Electronic Library (IEL)</source><creator>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</creator><creatorcontrib>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</creatorcontrib><description>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</description><identifier>ISSN: 2687-9735</identifier><identifier>EISSN: 2687-9743</identifier><identifier>DOI: 10.1109/JESTIE.2023.3252404</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Artificial neural networks ; Classification ; Design optimization ; Finite element method ; Machine learning ; Multiple objective analysis ; Performance prediction ; Permanent magnets ; Regression models ; Synchronous machines ; Training</subject><ispartof>IEEE journal of emerging and selected topics in industrial electronics (Print), 2023-07, Vol.4 (3), p.844-854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</citedby><cites>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</cites><orcidid>0000-0003-2259-8560 ; 0000-0002-5392-2979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pop, Adrian-Cornel</creatorcontrib><creatorcontrib>Cai, Zhaofeng</creatorcontrib><creatorcontrib>Gyselinck, Johan J. C.</creatorcontrib><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><title>IEEE journal of emerging and selected topics in industrial electronics (Print)</title><description>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><subject>Performance prediction</subject><subject>Permanent magnets</subject><subject>Regression models</subject><subject>Synchronous machines</subject><subject>Training</subject><issn>2687-9735</issn><issn>2687-9743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kN1qwkAQhUNpoWJ9gt4s9Dp2fxNzKRKtRRFaex0mm4muxI3djQV70z5En7BP0gSlVzOcOecMfEFwz-iQMZo8Pqev63k65JSLoeCKSyqvgh6PRnGYxFJc_-9C3QYD73eUUq4YZ1T2gq8l6K2xGC4QnDV2Q8amwIIsj1Vj6nyHujEfSFaHxuzNJ7SaJXVJ0qo9OKPJJe5_v3_IDOs9dmo4RfAmN5VpTgRsQVK7Bavb2hfcOPS-a1nWBVb-LrgpofI4uMx-8DZN15OncLGazSfjRag5jZswKUqp4zwSKBAE5IgsiWMQHJRQDLQqNUgJnI9EXuQCVMxYApHQsshHowRFP3g49x5c_X5E32S7-uhs-zJrM0zROIpE6xJnl3a19w7L7ODMHtwpYzTrYGdn2FkHO7vAFn8iYHW4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Pop, Adrian-Cornel</creator><creator>Cai, Zhaofeng</creator><creator>Gyselinck, Johan J. C.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2259-8560</orcidid><orcidid>https://orcid.org/0000-0002-5392-2979</orcidid></search><sort><creationdate>20230701</creationdate><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><author>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><topic>Performance prediction</topic><topic>Permanent magnets</topic><topic>Regression models</topic><topic>Synchronous machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pop, Adrian-Cornel</creatorcontrib><creatorcontrib>Cai, Zhaofeng</creatorcontrib><creatorcontrib>Gyselinck, Johan J. C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pop, Adrian-Cornel</au><au>Cai, Zhaofeng</au><au>Gyselinck, Johan J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</atitle><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>844</spage><epage>854</epage><pages>844-854</pages><issn>2687-9735</issn><eissn>2687-9743</eissn><abstract>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JESTIE.2023.3252404</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2259-8560</orcidid><orcidid>https://orcid.org/0000-0002-5392-2979</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2687-9735 |
ispartof | IEEE journal of emerging and selected topics in industrial electronics (Print), 2023-07, Vol.4 (3), p.844-854 |
issn | 2687-9735 2687-9743 |
language | eng |
recordid | cdi_proquest_journals_2831507663 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Classification Design optimization Finite element method Machine learning Multiple objective analysis Performance prediction Permanent magnets Regression models Synchronous machines Training |
title | Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning%20Aided%20Multiobjective%20Optimization%20of%20Electric%20Machines%E2%80%94%20Geometric-Feasibility%20and%20Enhanced%20Regression%20Models&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20industrial%20electronics%20(Print)&rft.au=Pop,%20Adrian-Cornel&rft.date=2023-07-01&rft.volume=4&rft.issue=3&rft.spage=844&rft.epage=854&rft.pages=844-854&rft.issn=2687-9735&rft.eissn=2687-9743&rft_id=info:doi/10.1109/JESTIE.2023.3252404&rft_dat=%3Cproquest_cross%3E2831507663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507663&rft_id=info:pmid/&rfr_iscdi=true |