Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models

This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in industrial electronics (Print) 2023-07, Vol.4 (3), p.844-854
Hauptverfasser: Pop, Adrian-Cornel, Cai, Zhaofeng, Gyselinck, Johan J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 3
container_start_page 844
container_title IEEE journal of emerging and selected topics in industrial electronics (Print)
container_volume 4
creator Pop, Adrian-Cornel
Cai, Zhaofeng
Gyselinck, Johan J. C.
description This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.
doi_str_mv 10.1109/JESTIE.2023.3252404
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831507663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831507663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</originalsourceid><addsrcrecordid>eNo9kN1qwkAQhUNpoWJ9gt4s9Dp2fxNzKRKtRRFaex0mm4muxI3djQV70z5En7BP0gSlVzOcOecMfEFwz-iQMZo8Pqev63k65JSLoeCKSyqvgh6PRnGYxFJc_-9C3QYD73eUUq4YZ1T2gq8l6K2xGC4QnDV2Q8amwIIsj1Vj6nyHujEfSFaHxuzNJ7SaJXVJ0qo9OKPJJe5_v3_IDOs9dmo4RfAmN5VpTgRsQVK7Bavb2hfcOPS-a1nWBVb-LrgpofI4uMx-8DZN15OncLGazSfjRag5jZswKUqp4zwSKBAE5IgsiWMQHJRQDLQqNUgJnI9EXuQCVMxYApHQsshHowRFP3g49x5c_X5E32S7-uhs-zJrM0zROIpE6xJnl3a19w7L7ODMHtwpYzTrYGdn2FkHO7vAFn8iYHW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507663</pqid></control><display><type>article</type><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><source>IEEE Electronic Library (IEL)</source><creator>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</creator><creatorcontrib>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</creatorcontrib><description>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</description><identifier>ISSN: 2687-9735</identifier><identifier>EISSN: 2687-9743</identifier><identifier>DOI: 10.1109/JESTIE.2023.3252404</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Artificial neural networks ; Classification ; Design optimization ; Finite element method ; Machine learning ; Multiple objective analysis ; Performance prediction ; Permanent magnets ; Regression models ; Synchronous machines ; Training</subject><ispartof>IEEE journal of emerging and selected topics in industrial electronics (Print), 2023-07, Vol.4 (3), p.844-854</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</citedby><cites>FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</cites><orcidid>0000-0003-2259-8560 ; 0000-0002-5392-2979</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pop, Adrian-Cornel</creatorcontrib><creatorcontrib>Cai, Zhaofeng</creatorcontrib><creatorcontrib>Gyselinck, Johan J. C.</creatorcontrib><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><title>IEEE journal of emerging and selected topics in industrial electronics (Print)</title><description>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Multiple objective analysis</subject><subject>Performance prediction</subject><subject>Permanent magnets</subject><subject>Regression models</subject><subject>Synchronous machines</subject><subject>Training</subject><issn>2687-9735</issn><issn>2687-9743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kN1qwkAQhUNpoWJ9gt4s9Dp2fxNzKRKtRRFaex0mm4muxI3djQV70z5En7BP0gSlVzOcOecMfEFwz-iQMZo8Pqev63k65JSLoeCKSyqvgh6PRnGYxFJc_-9C3QYD73eUUq4YZ1T2gq8l6K2xGC4QnDV2Q8amwIIsj1Vj6nyHujEfSFaHxuzNJ7SaJXVJ0qo9OKPJJe5_v3_IDOs9dmo4RfAmN5VpTgRsQVK7Bavb2hfcOPS-a1nWBVb-LrgpofI4uMx-8DZN15OncLGazSfjRag5jZswKUqp4zwSKBAE5IgsiWMQHJRQDLQqNUgJnI9EXuQCVMxYApHQsshHowRFP3g49x5c_X5E32S7-uhs-zJrM0zROIpE6xJnl3a19w7L7ODMHtwpYzTrYGdn2FkHO7vAFn8iYHW4</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Pop, Adrian-Cornel</creator><creator>Cai, Zhaofeng</creator><creator>Gyselinck, Johan J. C.</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2259-8560</orcidid><orcidid>https://orcid.org/0000-0002-5392-2979</orcidid></search><sort><creationdate>20230701</creationdate><title>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</title><author>Pop, Adrian-Cornel ; Cai, Zhaofeng ; Gyselinck, Johan J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-9df4c7b63e3ea3abee1977a32a5351ac5fca44a2283bdb3a57119a63c4db889e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Multiple objective analysis</topic><topic>Performance prediction</topic><topic>Permanent magnets</topic><topic>Regression models</topic><topic>Synchronous machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pop, Adrian-Cornel</creatorcontrib><creatorcontrib>Cai, Zhaofeng</creatorcontrib><creatorcontrib>Gyselinck, Johan J. C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pop, Adrian-Cornel</au><au>Cai, Zhaofeng</au><au>Gyselinck, Johan J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models</atitle><jtitle>IEEE journal of emerging and selected topics in industrial electronics (Print)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>844</spage><epage>854</epage><pages>844-854</pages><issn>2687-9735</issn><eissn>2687-9743</eissn><abstract>This article deals with the optimization of electrical machines by means of artificial neural network (ANN)-based classification and regression models. Geometrically (or otherwise) unfeasible designs are detected with high accuracy during the optimization process by means of an ad hoc classification model, whereas continuous targets are predicted through regression models. Training samples are generated with an expensive finite-element (FE) model, resulting in small training sets. Moreover, the design optimization normally involves multiple but correlated subobjectives. The correlation can be leveraged using chained regression or a multioutput ANN; it is shown that both methods can achieve higher predictive performance than predicting the targets separately. The developed methods are successfully applied to a permanent-magnet synchronous machine (PMSM) with 12 geometric parameters and four subobjectives, and considering both no-load and load operation. The results show very good predictive performance of the ANN models and a significant reduction of the computational effort. The optimization can thus be run several times, with, e.g., modified weighting of the subobjectives, with little extra cost.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JESTIE.2023.3252404</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2259-8560</orcidid><orcidid>https://orcid.org/0000-0002-5392-2979</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2687-9735
ispartof IEEE journal of emerging and selected topics in industrial electronics (Print), 2023-07, Vol.4 (3), p.844-854
issn 2687-9735
2687-9743
language eng
recordid cdi_proquest_journals_2831507663
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Design optimization
Finite element method
Machine learning
Multiple objective analysis
Performance prediction
Permanent magnets
Regression models
Synchronous machines
Training
title Machine-Learning Aided Multiobjective Optimization of Electric Machines— Geometric-Feasibility and Enhanced Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine-Learning%20Aided%20Multiobjective%20Optimization%20of%20Electric%20Machines%E2%80%94%20Geometric-Feasibility%20and%20Enhanced%20Regression%20Models&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20industrial%20electronics%20(Print)&rft.au=Pop,%20Adrian-Cornel&rft.date=2023-07-01&rft.volume=4&rft.issue=3&rft.spage=844&rft.epage=854&rft.pages=844-854&rft.issn=2687-9735&rft.eissn=2687-9743&rft_id=info:doi/10.1109/JESTIE.2023.3252404&rft_dat=%3Cproquest_cross%3E2831507663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507663&rft_id=info:pmid/&rfr_iscdi=true