Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes

The electro-optical properties, i.e., the optical response in the presence of a static electric field of a D 2 + molecular complex (two charge centers interacting with a conduction band electron)confined in self-assembled GaAs/GaAlAs flake-like quantum dots were calculated. Within the effective mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2023, Vol.55 (9)
Hauptverfasser: Palacio, J. L., Giraldo-Tobón, Eugenio, Pedraza-Miranda, Guillermo L., Fulla, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Optical and quantum electronics
container_volume 55
creator Palacio, J. L.
Giraldo-Tobón, Eugenio
Pedraza-Miranda, Guillermo L.
Fulla, M. R.
description The electro-optical properties, i.e., the optical response in the presence of a static electric field of a D 2 + molecular complex (two charge centers interacting with a conduction band electron)confined in self-assembled GaAs/GaAlAs flake-like quantum dots were calculated. Within the effective mass approximation, the calculated results were successfully contrasted with analytic and numerical results for neutral donors and single electrons in strictly two-dimensional quantum dots. The electro-optical properties were calculated within the density matrix formalism in the two-level approximation since the electric field breaks the degeneracy between the ground and first excited states when the two charge centers do not collectivize the electron. The results show that an increase in a hydrostatic pressure field, in the in-situ temperature, and the aluminum concentration in the host material can tune the total absorption peak leading to redshifts (with the former probe) and blueshifts (with the other physical quantities). Suitable donor-donor separation and polarization angle values can maximize the absorption peak value. In addition, the asymmetry due to the shrinkage of the nanoflake’s top and its eccentricity can enhance the D 2 + /optical field coupling and make this system optically active for energies below ≈ 20 meV (Terahertz band).
doi_str_mv 10.1007/s11082-023-05034-x
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2831410950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831410950</sourcerecordid><originalsourceid>FETCH-LOGICAL-p142x-ecf456ae4a696e24f83b376792f25ef965f34c2125e45de1351095c945304e723</originalsourceid><addsrcrecordid>eNpFkV1LHDEUhoNUcKv-Aa8CvbTpnnzNx-WyXbWw0BsF74Y4e6JjM8mYZGD7l_yVjbtCISQkPM97Ai8hVxx-cIB6mTiHRjAQkoEGqdj-hCy4rgVreP34hSxAQsWalrdn5GtKrwBQKQ0L8r6xFvucaLA04zhhNHmO-J2-_N3FkLLJQ0-niCkdXo3fUePmcfDzSPvge_S5GEPwtKz8ghRdiYuBhamYxhU3lNA84GGEoT_FNR1DgWZnYokYJ4d7OvgiuuHTuTWrtCybWyXqjQ_WmT-YLsipNS7h5ed5Th5uNvfrO7b9fftrvdqyiSuxZ9hbpSuDylRthULZRj7JuqpbYYVG21baStULXi5K75BLzaHVfau0BIW1kOfk2zG3fP1txpS71zBHX0Z2opFcfeBQKHmk0hQH_4zxP8Wh-yilO5bSlVK6QyndXv4DLBSCnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831410950</pqid></control><display><type>article</type><title>Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes</title><source>SpringerNature Journals</source><creator>Palacio, J. L. ; Giraldo-Tobón, Eugenio ; Pedraza-Miranda, Guillermo L. ; Fulla, M. R.</creator><creatorcontrib>Palacio, J. L. ; Giraldo-Tobón, Eugenio ; Pedraza-Miranda, Guillermo L. ; Fulla, M. R.</creatorcontrib><description>The electro-optical properties, i.e., the optical response in the presence of a static electric field of a D 2 + molecular complex (two charge centers interacting with a conduction band electron)confined in self-assembled GaAs/GaAlAs flake-like quantum dots were calculated. Within the effective mass approximation, the calculated results were successfully contrasted with analytic and numerical results for neutral donors and single electrons in strictly two-dimensional quantum dots. The electro-optical properties were calculated within the density matrix formalism in the two-level approximation since the electric field breaks the degeneracy between the ground and first excited states when the two charge centers do not collectivize the electron. The results show that an increase in a hydrostatic pressure field, in the in-situ temperature, and the aluminum concentration in the host material can tune the total absorption peak leading to redshifts (with the former probe) and blueshifts (with the other physical quantities). Suitable donor-donor separation and polarization angle values can maximize the absorption peak value. In addition, the asymmetry due to the shrinkage of the nanoflake’s top and its eccentricity can enhance the D 2 + /optical field coupling and make this system optically active for energies below ≈ 20 meV (Terahertz band).</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05034-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorption ; Aluminum ; Aluminum gallium arsenides ; Approximation ; Characterization and Evaluation of Materials ; Computer Communication Networks ; Conduction bands ; Electric fields ; Electrical Engineering ; Gallium arsenide ; Hydrostatic pressure ; Lasers ; Mathematical analysis ; Optical activity ; Optical Devices ; Optical properties ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Pressure effects ; Quantum dots ; Self-assembly ; Single electrons ; Temperature effects ; Terahertz frequencies</subject><ispartof>Optical and quantum electronics, 2023, Vol.55 (9)</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05034-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05034-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Palacio, J. L.</creatorcontrib><creatorcontrib>Giraldo-Tobón, Eugenio</creatorcontrib><creatorcontrib>Pedraza-Miranda, Guillermo L.</creatorcontrib><creatorcontrib>Fulla, M. R.</creatorcontrib><title>Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>The electro-optical properties, i.e., the optical response in the presence of a static electric field of a D 2 + molecular complex (two charge centers interacting with a conduction band electron)confined in self-assembled GaAs/GaAlAs flake-like quantum dots were calculated. Within the effective mass approximation, the calculated results were successfully contrasted with analytic and numerical results for neutral donors and single electrons in strictly two-dimensional quantum dots. The electro-optical properties were calculated within the density matrix formalism in the two-level approximation since the electric field breaks the degeneracy between the ground and first excited states when the two charge centers do not collectivize the electron. The results show that an increase in a hydrostatic pressure field, in the in-situ temperature, and the aluminum concentration in the host material can tune the total absorption peak leading to redshifts (with the former probe) and blueshifts (with the other physical quantities). Suitable donor-donor separation and polarization angle values can maximize the absorption peak value. In addition, the asymmetry due to the shrinkage of the nanoflake’s top and its eccentricity can enhance the D 2 + /optical field coupling and make this system optically active for energies below ≈ 20 meV (Terahertz band).</description><subject>Absorption</subject><subject>Aluminum</subject><subject>Aluminum gallium arsenides</subject><subject>Approximation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Conduction bands</subject><subject>Electric fields</subject><subject>Electrical Engineering</subject><subject>Gallium arsenide</subject><subject>Hydrostatic pressure</subject><subject>Lasers</subject><subject>Mathematical analysis</subject><subject>Optical activity</subject><subject>Optical Devices</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure effects</subject><subject>Quantum dots</subject><subject>Self-assembly</subject><subject>Single electrons</subject><subject>Temperature effects</subject><subject>Terahertz frequencies</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkV1LHDEUhoNUcKv-Aa8CvbTpnnzNx-WyXbWw0BsF74Y4e6JjM8mYZGD7l_yVjbtCISQkPM97Ai8hVxx-cIB6mTiHRjAQkoEGqdj-hCy4rgVreP34hSxAQsWalrdn5GtKrwBQKQ0L8r6xFvucaLA04zhhNHmO-J2-_N3FkLLJQ0-niCkdXo3fUePmcfDzSPvge_S5GEPwtKz8ghRdiYuBhamYxhU3lNA84GGEoT_FNR1DgWZnYokYJ4d7OvgiuuHTuTWrtCybWyXqjQ_WmT-YLsipNS7h5ed5Th5uNvfrO7b9fftrvdqyiSuxZ9hbpSuDylRthULZRj7JuqpbYYVG21baStULXi5K75BLzaHVfau0BIW1kOfk2zG3fP1txpS71zBHX0Z2opFcfeBQKHmk0hQH_4zxP8Wh-yilO5bSlVK6QyndXv4DLBSCnw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Palacio, J. L.</creator><creator>Giraldo-Tobón, Eugenio</creator><creator>Pedraza-Miranda, Guillermo L.</creator><creator>Fulla, M. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2023</creationdate><title>Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes</title><author>Palacio, J. L. ; Giraldo-Tobón, Eugenio ; Pedraza-Miranda, Guillermo L. ; Fulla, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p142x-ecf456ae4a696e24f83b376792f25ef965f34c2125e45de1351095c945304e723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Aluminum</topic><topic>Aluminum gallium arsenides</topic><topic>Approximation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Conduction bands</topic><topic>Electric fields</topic><topic>Electrical Engineering</topic><topic>Gallium arsenide</topic><topic>Hydrostatic pressure</topic><topic>Lasers</topic><topic>Mathematical analysis</topic><topic>Optical activity</topic><topic>Optical Devices</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure effects</topic><topic>Quantum dots</topic><topic>Self-assembly</topic><topic>Single electrons</topic><topic>Temperature effects</topic><topic>Terahertz frequencies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacio, J. L.</creatorcontrib><creatorcontrib>Giraldo-Tobón, Eugenio</creatorcontrib><creatorcontrib>Pedraza-Miranda, Guillermo L.</creatorcontrib><creatorcontrib>Fulla, M. R.</creatorcontrib><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacio, J. L.</au><au>Giraldo-Tobón, Eugenio</au><au>Pedraza-Miranda, Guillermo L.</au><au>Fulla, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2023</date><risdate>2023</risdate><volume>55</volume><issue>9</issue><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>The electro-optical properties, i.e., the optical response in the presence of a static electric field of a D 2 + molecular complex (two charge centers interacting with a conduction band electron)confined in self-assembled GaAs/GaAlAs flake-like quantum dots were calculated. Within the effective mass approximation, the calculated results were successfully contrasted with analytic and numerical results for neutral donors and single electrons in strictly two-dimensional quantum dots. The electro-optical properties were calculated within the density matrix formalism in the two-level approximation since the electric field breaks the degeneracy between the ground and first excited states when the two charge centers do not collectivize the electron. The results show that an increase in a hydrostatic pressure field, in the in-situ temperature, and the aluminum concentration in the host material can tune the total absorption peak leading to redshifts (with the former probe) and blueshifts (with the other physical quantities). Suitable donor-donor separation and polarization angle values can maximize the absorption peak value. In addition, the asymmetry due to the shrinkage of the nanoflake’s top and its eccentricity can enhance the D 2 + /optical field coupling and make this system optically active for energies below ≈ 20 meV (Terahertz band).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05034-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2023, Vol.55 (9)
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2831410950
source SpringerNature Journals
subjects Absorption
Aluminum
Aluminum gallium arsenides
Approximation
Characterization and Evaluation of Materials
Computer Communication Networks
Conduction bands
Electric fields
Electrical Engineering
Gallium arsenide
Hydrostatic pressure
Lasers
Mathematical analysis
Optical activity
Optical Devices
Optical properties
Optics
Photonics
Physics
Physics and Astronomy
Pressure effects
Quantum dots
Self-assembly
Single electrons
Temperature effects
Terahertz frequencies
title Effects of temperature, hydrostatic pressure, and aluminum concentration on the electro-optical properties of a D2+ molecular complex in elliptical GaAs/GaAlAs nanoflakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A37%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20temperature,%20hydrostatic%20pressure,%20and%20aluminum%20concentration%20on%20the%20electro-optical%20properties%20of%20a%20D2+%20molecular%20complex%20in%20elliptical%20GaAs/GaAlAs%20nanoflakes&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Palacio,%20J.%20L.&rft.date=2023&rft.volume=55&rft.issue=9&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05034-x&rft_dat=%3Cproquest_sprin%3E2831410950%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831410950&rft_id=info:pmid/&rfr_iscdi=true