Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage

The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ingénierie des systèmes d'Information 2023-04, Vol.28 (2), p.291-298
Hauptverfasser: Siaho, Diomande, Ghislain, Pandry Koffi, Lambert, Kadjo Tanon, Ernest, Kakou Kouassi, Souleymane, Oumtanaga, Emmanuel, Assidjo Nogbou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 298
container_issue 2
container_start_page 291
container_title Ingénierie des systèmes d'Information
container_volume 28
creator Siaho, Diomande
Ghislain, Pandry Koffi
Lambert, Kadjo Tanon
Ernest, Kakou Kouassi
Souleymane, Oumtanaga
Emmanuel, Assidjo Nogbou
description The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.
doi_str_mv 10.18280/isi.280204
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831405261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831405261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1714-ccb0bd3b4707525e4f61e1ea03ab0956cb150e9f4ea14510340e5c95ebcdfc503</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpih-wxBKlzMR20i5LeVUqDwlYsIocZ1y5hLjYiRA7foPf40sILXdzNnfmSoexY4QxTtIJnLnoxj1TkHtskCJmSY6p2mcDzIRIUCAeslGMa-gjBGYSBuzl1ldUu2bFZ6F11hmna35HXdii_fDhlXvLF00k0_58fUf-EHztLAXdOt_wiy78Hc-98Zqfk24if2x90Cs6YgdW15FG_xyy56vLp_lNsry_Xsxny8RgjjIxpoSyEqXMIVepImkzJCQNQpcwVZkpUQFNrSSNUiEICaTMVFFpKmsUiCE72f3dBP_eUWyLte9C008W6USgBJVm2LdOdy0TfIyBbLEJ7k2HzwKh2Ooren3FTp_4BRBMYzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831405261</pqid></control><display><type>article</type><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</creator><creatorcontrib>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</creatorcontrib><description>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</description><identifier>ISSN: 1633-1311</identifier><identifier>EISSN: 2116-7125</identifier><identifier>DOI: 10.18280/isi.280204</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Acoustics ; Artificial intelligence ; Artificial neural networks ; Beans ; Biological activity ; Cocoa ; Cocoa beans ; Grain ; Grain storage ; Humidity ; Insecticides ; Insects ; Internet of Things ; Machine learning ; Moisture content ; Neural networks ; Pests ; Raw materials ; Temperature</subject><ispartof>Ingénierie des systèmes d'Information, 2023-04, Vol.28 (2), p.291-298</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Siaho, Diomande</creatorcontrib><creatorcontrib>Ghislain, Pandry Koffi</creatorcontrib><creatorcontrib>Lambert, Kadjo Tanon</creatorcontrib><creatorcontrib>Ernest, Kakou Kouassi</creatorcontrib><creatorcontrib>Souleymane, Oumtanaga</creatorcontrib><creatorcontrib>Emmanuel, Assidjo Nogbou</creatorcontrib><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><title>Ingénierie des systèmes d'Information</title><description>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</description><subject>Acoustics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Beans</subject><subject>Biological activity</subject><subject>Cocoa</subject><subject>Cocoa beans</subject><subject>Grain</subject><subject>Grain storage</subject><subject>Humidity</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Pests</subject><subject>Raw materials</subject><subject>Temperature</subject><issn>1633-1311</issn><issn>2116-7125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkMtOwzAQRS0EElXpih-wxBKlzMR20i5LeVUqDwlYsIocZ1y5hLjYiRA7foPf40sILXdzNnfmSoexY4QxTtIJnLnoxj1TkHtskCJmSY6p2mcDzIRIUCAeslGMa-gjBGYSBuzl1ldUu2bFZ6F11hmna35HXdii_fDhlXvLF00k0_58fUf-EHztLAXdOt_wiy78Hc-98Zqfk24if2x90Cs6YgdW15FG_xyy56vLp_lNsry_Xsxny8RgjjIxpoSyEqXMIVepImkzJCQNQpcwVZkpUQFNrSSNUiEICaTMVFFpKmsUiCE72f3dBP_eUWyLte9C008W6USgBJVm2LdOdy0TfIyBbLEJ7k2HzwKh2Ooren3FTp_4BRBMYzY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Siaho, Diomande</creator><creator>Ghislain, Pandry Koffi</creator><creator>Lambert, Kadjo Tanon</creator><creator>Ernest, Kakou Kouassi</creator><creator>Souleymane, Oumtanaga</creator><creator>Emmanuel, Assidjo Nogbou</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230401</creationdate><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><author>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1714-ccb0bd3b4707525e4f61e1ea03ab0956cb150e9f4ea14510340e5c95ebcdfc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Beans</topic><topic>Biological activity</topic><topic>Cocoa</topic><topic>Cocoa beans</topic><topic>Grain</topic><topic>Grain storage</topic><topic>Humidity</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Pests</topic><topic>Raw materials</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Siaho, Diomande</creatorcontrib><creatorcontrib>Ghislain, Pandry Koffi</creatorcontrib><creatorcontrib>Lambert, Kadjo Tanon</creatorcontrib><creatorcontrib>Ernest, Kakou Kouassi</creatorcontrib><creatorcontrib>Souleymane, Oumtanaga</creatorcontrib><creatorcontrib>Emmanuel, Assidjo Nogbou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Ingénierie des systèmes d'Information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siaho, Diomande</au><au>Ghislain, Pandry Koffi</au><au>Lambert, Kadjo Tanon</au><au>Ernest, Kakou Kouassi</au><au>Souleymane, Oumtanaga</au><au>Emmanuel, Assidjo Nogbou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</atitle><jtitle>Ingénierie des systèmes d'Information</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>28</volume><issue>2</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>1633-1311</issn><eissn>2116-7125</eissn><abstract>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/isi.280204</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1633-1311
ispartof Ingénierie des systèmes d'Information, 2023-04, Vol.28 (2), p.291-298
issn 1633-1311
2116-7125
language eng
recordid cdi_proquest_journals_2831405261
source EZB-FREE-00999 freely available EZB journals
subjects Acoustics
Artificial intelligence
Artificial neural networks
Beans
Biological activity
Cocoa
Cocoa beans
Grain
Grain storage
Humidity
Insecticides
Insects
Internet of Things
Machine learning
Moisture content
Neural networks
Pests
Raw materials
Temperature
title Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Artificial%20Neural%20Network%20of%20Insect%E2%80%99s%20Proliferation%20During%20Cocoa%20Beans%20Storage&rft.jtitle=Ing%C3%A9nierie%20des%20syst%C3%A8mes%20d'Information&rft.au=Siaho,%20Diomande&rft.date=2023-04-01&rft.volume=28&rft.issue=2&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=1633-1311&rft.eissn=2116-7125&rft_id=info:doi/10.18280/isi.280204&rft_dat=%3Cproquest_cross%3E2831405261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831405261&rft_id=info:pmid/&rfr_iscdi=true