Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage
The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the c...
Gespeichert in:
Veröffentlicht in: | Ingénierie des systèmes d'Information 2023-04, Vol.28 (2), p.291-298 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 298 |
---|---|
container_issue | 2 |
container_start_page | 291 |
container_title | Ingénierie des systèmes d'Information |
container_volume | 28 |
creator | Siaho, Diomande Ghislain, Pandry Koffi Lambert, Kadjo Tanon Ernest, Kakou Kouassi Souleymane, Oumtanaga Emmanuel, Assidjo Nogbou |
description | The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion. |
doi_str_mv | 10.18280/isi.280204 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831405261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831405261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1714-ccb0bd3b4707525e4f61e1ea03ab0956cb150e9f4ea14510340e5c95ebcdfc503</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EElXpih-wxBKlzMR20i5LeVUqDwlYsIocZ1y5hLjYiRA7foPf40sILXdzNnfmSoexY4QxTtIJnLnoxj1TkHtskCJmSY6p2mcDzIRIUCAeslGMa-gjBGYSBuzl1ldUu2bFZ6F11hmna35HXdii_fDhlXvLF00k0_58fUf-EHztLAXdOt_wiy78Hc-98Zqfk24if2x90Cs6YgdW15FG_xyy56vLp_lNsry_Xsxny8RgjjIxpoSyEqXMIVepImkzJCQNQpcwVZkpUQFNrSSNUiEICaTMVFFpKmsUiCE72f3dBP_eUWyLte9C008W6USgBJVm2LdOdy0TfIyBbLEJ7k2HzwKh2Ooren3FTp_4BRBMYzY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831405261</pqid></control><display><type>article</type><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</creator><creatorcontrib>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</creatorcontrib><description>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</description><identifier>ISSN: 1633-1311</identifier><identifier>EISSN: 2116-7125</identifier><identifier>DOI: 10.18280/isi.280204</identifier><language>eng</language><publisher>Edmonton: International Information and Engineering Technology Association (IIETA)</publisher><subject>Acoustics ; Artificial intelligence ; Artificial neural networks ; Beans ; Biological activity ; Cocoa ; Cocoa beans ; Grain ; Grain storage ; Humidity ; Insecticides ; Insects ; Internet of Things ; Machine learning ; Moisture content ; Neural networks ; Pests ; Raw materials ; Temperature</subject><ispartof>Ingénierie des systèmes d'Information, 2023-04, Vol.28 (2), p.291-298</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Siaho, Diomande</creatorcontrib><creatorcontrib>Ghislain, Pandry Koffi</creatorcontrib><creatorcontrib>Lambert, Kadjo Tanon</creatorcontrib><creatorcontrib>Ernest, Kakou Kouassi</creatorcontrib><creatorcontrib>Souleymane, Oumtanaga</creatorcontrib><creatorcontrib>Emmanuel, Assidjo Nogbou</creatorcontrib><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><title>Ingénierie des systèmes d'Information</title><description>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</description><subject>Acoustics</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Beans</subject><subject>Biological activity</subject><subject>Cocoa</subject><subject>Cocoa beans</subject><subject>Grain</subject><subject>Grain storage</subject><subject>Humidity</subject><subject>Insecticides</subject><subject>Insects</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Moisture content</subject><subject>Neural networks</subject><subject>Pests</subject><subject>Raw materials</subject><subject>Temperature</subject><issn>1633-1311</issn><issn>2116-7125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkMtOwzAQRS0EElXpih-wxBKlzMR20i5LeVUqDwlYsIocZ1y5hLjYiRA7foPf40sILXdzNnfmSoexY4QxTtIJnLnoxj1TkHtskCJmSY6p2mcDzIRIUCAeslGMa-gjBGYSBuzl1ldUu2bFZ6F11hmna35HXdii_fDhlXvLF00k0_58fUf-EHztLAXdOt_wiy78Hc-98Zqfk24if2x90Cs6YgdW15FG_xyy56vLp_lNsry_Xsxny8RgjjIxpoSyEqXMIVepImkzJCQNQpcwVZkpUQFNrSSNUiEICaTMVFFpKmsUiCE72f3dBP_eUWyLte9C008W6USgBJVm2LdOdy0TfIyBbLEJ7k2HzwKh2Ooren3FTp_4BRBMYzY</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Siaho, Diomande</creator><creator>Ghislain, Pandry Koffi</creator><creator>Lambert, Kadjo Tanon</creator><creator>Ernest, Kakou Kouassi</creator><creator>Souleymane, Oumtanaga</creator><creator>Emmanuel, Assidjo Nogbou</creator><general>International Information and Engineering Technology Association (IIETA)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230401</creationdate><title>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</title><author>Siaho, Diomande ; Ghislain, Pandry Koffi ; Lambert, Kadjo Tanon ; Ernest, Kakou Kouassi ; Souleymane, Oumtanaga ; Emmanuel, Assidjo Nogbou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1714-ccb0bd3b4707525e4f61e1ea03ab0956cb150e9f4ea14510340e5c95ebcdfc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Beans</topic><topic>Biological activity</topic><topic>Cocoa</topic><topic>Cocoa beans</topic><topic>Grain</topic><topic>Grain storage</topic><topic>Humidity</topic><topic>Insecticides</topic><topic>Insects</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Moisture content</topic><topic>Neural networks</topic><topic>Pests</topic><topic>Raw materials</topic><topic>Temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Siaho, Diomande</creatorcontrib><creatorcontrib>Ghislain, Pandry Koffi</creatorcontrib><creatorcontrib>Lambert, Kadjo Tanon</creatorcontrib><creatorcontrib>Ernest, Kakou Kouassi</creatorcontrib><creatorcontrib>Souleymane, Oumtanaga</creatorcontrib><creatorcontrib>Emmanuel, Assidjo Nogbou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Ingénierie des systèmes d'Information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siaho, Diomande</au><au>Ghislain, Pandry Koffi</au><au>Lambert, Kadjo Tanon</au><au>Ernest, Kakou Kouassi</au><au>Souleymane, Oumtanaga</au><au>Emmanuel, Assidjo Nogbou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage</atitle><jtitle>Ingénierie des systèmes d'Information</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>28</volume><issue>2</issue><spage>291</spage><epage>298</epage><pages>291-298</pages><issn>1633-1311</issn><eissn>2116-7125</eissn><abstract>The cocoa bean is a grain which is the raw material for the economy of Côte d'Ivoire. Thus, throughout the bean value chain, particular attention is paid to quality. In this chain, storage remains an imported step. Indeed, insects are one of the pests causing enormous damage and losses in the conservation of stored grains. These insects are also present during the storage of cocoa beans. The proliferation of insects is due to several physico-chemical and environmental factors such as water content (Te), sugar content (TSu) and temperature (T°) which interact in the bean ecosystem. This proliferation remains difficult to control and estimate. In this work, we invented a method based on neural networks to determine the evolution of insect density. Indeed, an Insect Dynamics Model (MDI) has been established. To validate the effectiveness of the proposed method, we have chosen as performance criteria the coefficient of determination R²=0.9982. This shows a good correlation of the experimental values and those predicted. This result was obtained, with an optimal 4-5-1 architecture selected by Akaike's information criterion.</abstract><cop>Edmonton</cop><pub>International Information and Engineering Technology Association (IIETA)</pub><doi>10.18280/isi.280204</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1633-1311 |
ispartof | Ingénierie des systèmes d'Information, 2023-04, Vol.28 (2), p.291-298 |
issn | 1633-1311 2116-7125 |
language | eng |
recordid | cdi_proquest_journals_2831405261 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Acoustics Artificial intelligence Artificial neural networks Beans Biological activity Cocoa Cocoa beans Grain Grain storage Humidity Insecticides Insects Internet of Things Machine learning Moisture content Neural networks Pests Raw materials Temperature |
title | Modeling Artificial Neural Network of Insect’s Proliferation During Cocoa Beans Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T02%3A12%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Artificial%20Neural%20Network%20of%20Insect%E2%80%99s%20Proliferation%20During%20Cocoa%20Beans%20Storage&rft.jtitle=Ing%C3%A9nierie%20des%20syst%C3%A8mes%20d'Information&rft.au=Siaho,%20Diomande&rft.date=2023-04-01&rft.volume=28&rft.issue=2&rft.spage=291&rft.epage=298&rft.pages=291-298&rft.issn=1633-1311&rft.eissn=2116-7125&rft_id=info:doi/10.18280/isi.280204&rft_dat=%3Cproquest_cross%3E2831405261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831405261&rft_id=info:pmid/&rfr_iscdi=true |