Investigation on very long-term brittle creep test and creep-damage constitutive model for granite

Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lastin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica 2023-07, Vol.18 (7), p.3947-3954
Hauptverfasser: Lyu, Cheng, Xu, Deng, Liu, Jianfeng, Ren, Yi, Liang, Chao, Zhao, Chengxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3954
container_issue 7
container_start_page 3947
container_title Acta geotechnica
container_volume 18
creator Lyu, Cheng
Xu, Deng
Liu, Jianfeng
Ren, Yi
Liang, Chao
Zhao, Chengxing
description Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10 −12  s −1 , which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.
doi_str_mv 10.1007/s11440-022-01790-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831112682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831112682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8RzNJmmSPsvixIHjRc0jbtHRpkzXJLuy_N1rRmzDMZJj3XmYeQtdAb4FSdZcAhKCEMkYoqBUl4gQtQEsgAJyf_r5ZdY4uUtpSKjkTcoHqjT-4lIfe5iF4XOLg4hGPwfckuzjhOg45jw430bkdzgWLrW_nlrR2sn2ZBV8k8j4PB4en0LoRdyHiPlo_ZHeJzjo7Jnf1U5fo_fHhbf1MXl6fNuv7F9JwWOWSnQLdaiZaULzc0EnZctEJSXmrKmarWrtaVbKxDdVKgNDdSmnFLQNnVcOX6GbW3cXwsS-Lmm3YR1--NExzKMdLzQqKzagmhpSi68wuDpONRwPUfHlpZi9N8dJ8e2lEIfGZlArY9y7-Sf_D-gTGDndG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831112682</pqid></control><display><type>article</type><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><source>SpringerLink Journals</source><creator>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</creator><creatorcontrib>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</creatorcontrib><description>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10 −12  s −1 , which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-022-01790-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axial stress ; Brittleness ; Complex Fluids and Microfluidics ; Constitutive models ; Creep rate ; Creep strength ; Creep tests ; Damage ; Deformation ; Engineering ; Foundations ; Geoengineering ; Geotechnical Engineering &amp; Applied Earth Sciences ; Granite ; Hydraulics ; Mathematical models ; Mechanical properties ; Mechanics ; Nuclear accidents &amp; safety ; Nuclear safety ; Radioactive wastes ; Repositories ; Rock ; Rocks ; Salts ; Sediment samples ; Short Communication ; Soft and Granular Matter ; Soil Science &amp; Conservation ; Solid Mechanics ; Solifluction ; Stability analysis ; Stress ; Stress ratio ; Time dependence</subject><ispartof>Acta geotechnica, 2023-07, Vol.18 (7), p.3947-3954</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</citedby><cites>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</cites><orcidid>0000-0002-3198-4095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-022-01790-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-022-01790-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Xu, Deng</creatorcontrib><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhao, Chengxing</creatorcontrib><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10 −12  s −1 , which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</description><subject>Axial stress</subject><subject>Brittleness</subject><subject>Complex Fluids and Microfluidics</subject><subject>Constitutive models</subject><subject>Creep rate</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Granite</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear safety</subject><subject>Radioactive wastes</subject><subject>Repositories</subject><subject>Rock</subject><subject>Rocks</subject><subject>Salts</subject><subject>Sediment samples</subject><subject>Short Communication</subject><subject>Soft and Granular Matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Solid Mechanics</subject><subject>Solifluction</subject><subject>Stability analysis</subject><subject>Stress</subject><subject>Stress ratio</subject><subject>Time dependence</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8RzNJmmSPsvixIHjRc0jbtHRpkzXJLuy_N1rRmzDMZJj3XmYeQtdAb4FSdZcAhKCEMkYoqBUl4gQtQEsgAJyf_r5ZdY4uUtpSKjkTcoHqjT-4lIfe5iF4XOLg4hGPwfckuzjhOg45jw430bkdzgWLrW_nlrR2sn2ZBV8k8j4PB4en0LoRdyHiPlo_ZHeJzjo7Jnf1U5fo_fHhbf1MXl6fNuv7F9JwWOWSnQLdaiZaULzc0EnZctEJSXmrKmarWrtaVbKxDdVKgNDdSmnFLQNnVcOX6GbW3cXwsS-Lmm3YR1--NExzKMdLzQqKzagmhpSi68wuDpONRwPUfHlpZi9N8dJ8e2lEIfGZlArY9y7-Sf_D-gTGDndG</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Lyu, Cheng</creator><creator>Xu, Deng</creator><creator>Liu, Jianfeng</creator><creator>Ren, Yi</creator><creator>Liang, Chao</creator><creator>Zhao, Chengxing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3198-4095</orcidid></search><sort><creationdate>20230701</creationdate><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><author>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial stress</topic><topic>Brittleness</topic><topic>Complex Fluids and Microfluidics</topic><topic>Constitutive models</topic><topic>Creep rate</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Granite</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear safety</topic><topic>Radioactive wastes</topic><topic>Repositories</topic><topic>Rock</topic><topic>Rocks</topic><topic>Salts</topic><topic>Sediment samples</topic><topic>Short Communication</topic><topic>Soft and Granular Matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Solid Mechanics</topic><topic>Solifluction</topic><topic>Stability analysis</topic><topic>Stress</topic><topic>Stress ratio</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Xu, Deng</creatorcontrib><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhao, Chengxing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Cheng</au><au>Xu, Deng</au><au>Liu, Jianfeng</au><au>Ren, Yi</au><au>Liang, Chao</au><au>Zhao, Chengxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>3947</spage><epage>3954</epage><pages>3947-3954</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10 −12  s −1 , which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-022-01790-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3198-4095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-1125
ispartof Acta geotechnica, 2023-07, Vol.18 (7), p.3947-3954
issn 1861-1125
1861-1133
language eng
recordid cdi_proquest_journals_2831112682
source SpringerLink Journals
subjects Axial stress
Brittleness
Complex Fluids and Microfluidics
Constitutive models
Creep rate
Creep strength
Creep tests
Damage
Deformation
Engineering
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Granite
Hydraulics
Mathematical models
Mechanical properties
Mechanics
Nuclear accidents & safety
Nuclear safety
Radioactive wastes
Repositories
Rock
Rocks
Salts
Sediment samples
Short Communication
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Solifluction
Stability analysis
Stress
Stress ratio
Time dependence
title Investigation on very long-term brittle creep test and creep-damage constitutive model for granite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20very%20long-term%20brittle%20creep%20test%20and%20creep-damage%20constitutive%20model%20for%20granite&rft.jtitle=Acta%20geotechnica&rft.au=Lyu,%20Cheng&rft.date=2023-07-01&rft.volume=18&rft.issue=7&rft.spage=3947&rft.epage=3954&rft.pages=3947-3954&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-022-01790-4&rft_dat=%3Cproquest_cross%3E2831112682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831112682&rft_id=info:pmid/&rfr_iscdi=true