Investigation on very long-term brittle creep test and creep-damage constitutive model for granite
Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lastin...
Gespeichert in:
Veröffentlicht in: | Acta geotechnica 2023-07, Vol.18 (7), p.3947-3954 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3954 |
---|---|
container_issue | 7 |
container_start_page | 3947 |
container_title | Acta geotechnica |
container_volume | 18 |
creator | Lyu, Cheng Xu, Deng Liu, Jianfeng Ren, Yi Liang, Chao Zhao, Chengxing |
description | Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10
−12
s
−1
, which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories. |
doi_str_mv | 10.1007/s11440-022-01790-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2831112682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831112682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8RzNJmmSPsvixIHjRc0jbtHRpkzXJLuy_N1rRmzDMZJj3XmYeQtdAb4FSdZcAhKCEMkYoqBUl4gQtQEsgAJyf_r5ZdY4uUtpSKjkTcoHqjT-4lIfe5iF4XOLg4hGPwfckuzjhOg45jw430bkdzgWLrW_nlrR2sn2ZBV8k8j4PB4en0LoRdyHiPlo_ZHeJzjo7Jnf1U5fo_fHhbf1MXl6fNuv7F9JwWOWSnQLdaiZaULzc0EnZctEJSXmrKmarWrtaVbKxDdVKgNDdSmnFLQNnVcOX6GbW3cXwsS-Lmm3YR1--NExzKMdLzQqKzagmhpSi68wuDpONRwPUfHlpZi9N8dJ8e2lEIfGZlArY9y7-Sf_D-gTGDndG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831112682</pqid></control><display><type>article</type><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><source>SpringerLink Journals</source><creator>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</creator><creatorcontrib>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</creatorcontrib><description>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10
−12
s
−1
, which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-022-01790-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axial stress ; Brittleness ; Complex Fluids and Microfluidics ; Constitutive models ; Creep rate ; Creep strength ; Creep tests ; Damage ; Deformation ; Engineering ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Granite ; Hydraulics ; Mathematical models ; Mechanical properties ; Mechanics ; Nuclear accidents & safety ; Nuclear safety ; Radioactive wastes ; Repositories ; Rock ; Rocks ; Salts ; Sediment samples ; Short Communication ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Solifluction ; Stability analysis ; Stress ; Stress ratio ; Time dependence</subject><ispartof>Acta geotechnica, 2023-07, Vol.18 (7), p.3947-3954</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</citedby><cites>FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</cites><orcidid>0000-0002-3198-4095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-022-01790-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-022-01790-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Xu, Deng</creatorcontrib><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhao, Chengxing</creatorcontrib><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10
−12
s
−1
, which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</description><subject>Axial stress</subject><subject>Brittleness</subject><subject>Complex Fluids and Microfluidics</subject><subject>Constitutive models</subject><subject>Creep rate</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Damage</subject><subject>Deformation</subject><subject>Engineering</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Granite</subject><subject>Hydraulics</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Nuclear accidents & safety</subject><subject>Nuclear safety</subject><subject>Radioactive wastes</subject><subject>Repositories</subject><subject>Rock</subject><subject>Rocks</subject><subject>Salts</subject><subject>Sediment samples</subject><subject>Short Communication</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Solifluction</subject><subject>Stability analysis</subject><subject>Stress</subject><subject>Stress ratio</subject><subject>Time dependence</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8RzNJmmSPsvixIHjRc0jbtHRpkzXJLuy_N1rRmzDMZJj3XmYeQtdAb4FSdZcAhKCEMkYoqBUl4gQtQEsgAJyf_r5ZdY4uUtpSKjkTcoHqjT-4lIfe5iF4XOLg4hGPwfckuzjhOg45jw430bkdzgWLrW_nlrR2sn2ZBV8k8j4PB4en0LoRdyHiPlo_ZHeJzjo7Jnf1U5fo_fHhbf1MXl6fNuv7F9JwWOWSnQLdaiZaULzc0EnZctEJSXmrKmarWrtaVbKxDdVKgNDdSmnFLQNnVcOX6GbW3cXwsS-Lmm3YR1--NExzKMdLzQqKzagmhpSi68wuDpONRwPUfHlpZi9N8dJ8e2lEIfGZlArY9y7-Sf_D-gTGDndG</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Lyu, Cheng</creator><creator>Xu, Deng</creator><creator>Liu, Jianfeng</creator><creator>Ren, Yi</creator><creator>Liang, Chao</creator><creator>Zhao, Chengxing</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3198-4095</orcidid></search><sort><creationdate>20230701</creationdate><title>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</title><author>Lyu, Cheng ; Xu, Deng ; Liu, Jianfeng ; Ren, Yi ; Liang, Chao ; Zhao, Chengxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3e718d824d173790f66d34f4603d752a5b8eb756cac0874148f97873a21ea7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Axial stress</topic><topic>Brittleness</topic><topic>Complex Fluids and Microfluidics</topic><topic>Constitutive models</topic><topic>Creep rate</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Damage</topic><topic>Deformation</topic><topic>Engineering</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Granite</topic><topic>Hydraulics</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Nuclear accidents & safety</topic><topic>Nuclear safety</topic><topic>Radioactive wastes</topic><topic>Repositories</topic><topic>Rock</topic><topic>Rocks</topic><topic>Salts</topic><topic>Sediment samples</topic><topic>Short Communication</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Solifluction</topic><topic>Stability analysis</topic><topic>Stress</topic><topic>Stress ratio</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Cheng</creatorcontrib><creatorcontrib>Xu, Deng</creatorcontrib><creatorcontrib>Liu, Jianfeng</creatorcontrib><creatorcontrib>Ren, Yi</creatorcontrib><creatorcontrib>Liang, Chao</creatorcontrib><creatorcontrib>Zhao, Chengxing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyu, Cheng</au><au>Xu, Deng</au><au>Liu, Jianfeng</au><au>Ren, Yi</au><au>Liang, Chao</au><au>Zhao, Chengxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation on very long-term brittle creep test and creep-damage constitutive model for granite</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>18</volume><issue>7</issue><spage>3947</spage><epage>3954</epage><pages>3947-3954</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>Understanding the long-term creep mechanical behavior of granite is critical to evaluating the safety of the nuclear waste repository. It is unreasonable to extrapolate the creep test results of hard rock samples at high stress to lower stress. In this work, the uniaxial creep test of granite lasting for 1117 days is carried out at lower axial stress levels (60 and 87 MPa) to reveal its long-term time-dependent deformation characteristics. The test results show that under 60 MPa and 87 MPa, the creep deformation of granite accounts for only 21.7% and 36% of the total deformation, while that of salt rock is about 80%, making the creep of hard rock difficult to be detected. The steady creep rate of granite is 9.14 × 10
−12
s
−1
, which is 1–2 orders of magnitude slower than that of salt rock under low stress, and 3–6 orders of magnitude slower than that under short-term granite creep test. At the same stress ratio of about 0.45, it takes 47.6 days for granite samples to enter the steady creep stage, which is much shorter than 213 days for salt rock samples. In the short-term (several hours or days) creep test under low stress level, the hard rock sample does not actually enter the steady creep stage. Based on the fractional derivative theory and damage mechanics, a novel nonlinear creep-damage constitutive model that can well describe the long-term brittle creep characteristics of granite is proposed. This research reveals the very long-term time-dependent deformation behavior of hard rock, which is conducive to the evaluation of long-term stability of nuclear waste repositories.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-022-01790-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3198-4095</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2023-07, Vol.18 (7), p.3947-3954 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_2831112682 |
source | SpringerLink Journals |
subjects | Axial stress Brittleness Complex Fluids and Microfluidics Constitutive models Creep rate Creep strength Creep tests Damage Deformation Engineering Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Granite Hydraulics Mathematical models Mechanical properties Mechanics Nuclear accidents & safety Nuclear safety Radioactive wastes Repositories Rock Rocks Salts Sediment samples Short Communication Soft and Granular Matter Soil Science & Conservation Solid Mechanics Solifluction Stability analysis Stress Stress ratio Time dependence |
title | Investigation on very long-term brittle creep test and creep-damage constitutive model for granite |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20on%20very%20long-term%20brittle%20creep%20test%20and%20creep-damage%20constitutive%20model%20for%20granite&rft.jtitle=Acta%20geotechnica&rft.au=Lyu,%20Cheng&rft.date=2023-07-01&rft.volume=18&rft.issue=7&rft.spage=3947&rft.epage=3954&rft.pages=3947-3954&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-022-01790-4&rft_dat=%3Cproquest_cross%3E2831112682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831112682&rft_id=info:pmid/&rfr_iscdi=true |