Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft

The Optimised Spacing Delivery (further referred to as OSD) tool has the objective of calculating the necessary time spacing between two consecutive departing aircraft in order to fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 [1] is based on analytical m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2023-06, Vol.2526 (1), p.12108
Hauptverfasser: De Petris, L, De Visscher, I, Stempfel, G, Jacques, A, Saidi, M, Chalon Morgan, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12108
container_title Journal of physics. Conference series
container_volume 2526
creator De Petris, L
De Visscher, I
Stempfel, G
Jacques, A
Saidi, M
Chalon Morgan, C
description The Optimised Spacing Delivery (further referred to as OSD) tool has the objective of calculating the necessary time spacing between two consecutive departing aircraft in order to fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 [1] is based on analytical models [2] to predict aircraft trajectory and speed profiles. The use of this tool by Air Traffic Controller supports the safe, consistent and efficient delivery of the required separation or spacing between consecutive departure pairs by providing the time required between departure aircraft pairs via an automated count-down timer to the tower runway controller. In order to improve OSD, this paper introduces the enhanced Optimised Spacing Delivery (further referred to as eOSD) tool which builds on the OSD tool using Machine Learning techniques to make more accurate predictions of aircraft behaviour (e.g. trajectory/climb profile, speed profile) and wind on the initial departure path, so further optimising spacing delivery between consecutive departures. Zurich airport data were used to develop and asses the performance of the eOSD tool compared to the OSD tool.
doi_str_mv 10.1088/1742-6596/2526/1/012108
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2830917847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830917847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b7730199a35e9b08882e642ebe7c83126a3070554b3cdca3d0d4ce4752f1ff9d3</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYsoOKe_wYJ3wmw-2ia9HHV-MZkwvQ5p-tZlbGlMW2X-elMqE0EwNznknPe85AmCc4yuMOI8wiwmkzTJ0ogkJI1whDDxxkEw2juHe835cXDSNGuEqD9sFFSPUq20gXAO0hltXsNlZ23t2l7OzEoaBWW4sK3e6k-vllaq3rqGjX4HtwsLaD8ATJjXpgHVtf7Vm1YODVPtlJNVexocVXLTwNn3PQ5ebmbP-d1kvri9z6fziaJJ1k4KxijCWSZpAlnhf8cJpDGBApjiFJNUUsRQksQFVaWStERlrCBmCalwVWUlHQcXQ6919VsHTSvWdeeMXykIpyjDjMfMp9iQUq5uGgeVsE5vpdsJjEQPVfS4RI9O9FAFFgNUP3k5TOra_lQ_POXL30Fhy8qH6R_h_1Z8AcyLh5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830917847</pqid></control><display><type>article</type><title>Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>De Petris, L ; De Visscher, I ; Stempfel, G ; Jacques, A ; Saidi, M ; Chalon Morgan, C</creator><creatorcontrib>De Petris, L ; De Visscher, I ; Stempfel, G ; Jacques, A ; Saidi, M ; Chalon Morgan, C</creatorcontrib><description>The Optimised Spacing Delivery (further referred to as OSD) tool has the objective of calculating the necessary time spacing between two consecutive departing aircraft in order to fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 [1] is based on analytical models [2] to predict aircraft trajectory and speed profiles. The use of this tool by Air Traffic Controller supports the safe, consistent and efficient delivery of the required separation or spacing between consecutive departure pairs by providing the time required between departure aircraft pairs via an automated count-down timer to the tower runway controller. In order to improve OSD, this paper introduces the enhanced Optimised Spacing Delivery (further referred to as eOSD) tool which builds on the OSD tool using Machine Learning techniques to make more accurate predictions of aircraft behaviour (e.g. trajectory/climb profile, speed profile) and wind on the initial departure path, so further optimising spacing delivery between consecutive departures. Zurich airport data were used to develop and asses the performance of the eOSD tool compared to the OSD tool.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2526/1/012108</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Air traffic controllers ; Aircraft ; Airports ; Machine learning ; Physics ; Separation ; Traffic speed ; Trajectories</subject><ispartof>Journal of physics. Conference series, 2023-06, Vol.2526 (1), p.12108</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-b7730199a35e9b08882e642ebe7c83126a3070554b3cdca3d0d4ce4752f1ff9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2526/1/012108/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>De Petris, L</creatorcontrib><creatorcontrib>De Visscher, I</creatorcontrib><creatorcontrib>Stempfel, G</creatorcontrib><creatorcontrib>Jacques, A</creatorcontrib><creatorcontrib>Saidi, M</creatorcontrib><creatorcontrib>Chalon Morgan, C</creatorcontrib><title>Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>The Optimised Spacing Delivery (further referred to as OSD) tool has the objective of calculating the necessary time spacing between two consecutive departing aircraft in order to fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 [1] is based on analytical models [2] to predict aircraft trajectory and speed profiles. The use of this tool by Air Traffic Controller supports the safe, consistent and efficient delivery of the required separation or spacing between consecutive departure pairs by providing the time required between departure aircraft pairs via an automated count-down timer to the tower runway controller. In order to improve OSD, this paper introduces the enhanced Optimised Spacing Delivery (further referred to as eOSD) tool which builds on the OSD tool using Machine Learning techniques to make more accurate predictions of aircraft behaviour (e.g. trajectory/climb profile, speed profile) and wind on the initial departure path, so further optimising spacing delivery between consecutive departures. Zurich airport data were used to develop and asses the performance of the eOSD tool compared to the OSD tool.</description><subject>Air traffic controllers</subject><subject>Aircraft</subject><subject>Airports</subject><subject>Machine learning</subject><subject>Physics</subject><subject>Separation</subject><subject>Traffic speed</subject><subject>Trajectories</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAYhYsoOKe_wYJ3wmw-2ia9HHV-MZkwvQ5p-tZlbGlMW2X-elMqE0EwNznknPe85AmCc4yuMOI8wiwmkzTJ0ogkJI1whDDxxkEw2juHe835cXDSNGuEqD9sFFSPUq20gXAO0hltXsNlZ23t2l7OzEoaBWW4sK3e6k-vllaq3rqGjX4HtwsLaD8ATJjXpgHVtf7Vm1YODVPtlJNVexocVXLTwNn3PQ5ebmbP-d1kvri9z6fziaJJ1k4KxijCWSZpAlnhf8cJpDGBApjiFJNUUsRQksQFVaWStERlrCBmCalwVWUlHQcXQ6919VsHTSvWdeeMXykIpyjDjMfMp9iQUq5uGgeVsE5vpdsJjEQPVfS4RI9O9FAFFgNUP3k5TOra_lQ_POXL30Fhy8qH6R_h_1Z8AcyLh5g</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>De Petris, L</creator><creator>De Visscher, I</creator><creator>Stempfel, G</creator><creator>Jacques, A</creator><creator>Saidi, M</creator><creator>Chalon Morgan, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230601</creationdate><title>Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft</title><author>De Petris, L ; De Visscher, I ; Stempfel, G ; Jacques, A ; Saidi, M ; Chalon Morgan, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b7730199a35e9b08882e642ebe7c83126a3070554b3cdca3d0d4ce4752f1ff9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air traffic controllers</topic><topic>Aircraft</topic><topic>Airports</topic><topic>Machine learning</topic><topic>Physics</topic><topic>Separation</topic><topic>Traffic speed</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Petris, L</creatorcontrib><creatorcontrib>De Visscher, I</creatorcontrib><creatorcontrib>Stempfel, G</creatorcontrib><creatorcontrib>Jacques, A</creatorcontrib><creatorcontrib>Saidi, M</creatorcontrib><creatorcontrib>Chalon Morgan, C</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Petris, L</au><au>De Visscher, I</au><au>Stempfel, G</au><au>Jacques, A</au><au>Saidi, M</au><au>Chalon Morgan, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>2526</volume><issue>1</issue><spage>12108</spage><pages>12108-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The Optimised Spacing Delivery (further referred to as OSD) tool has the objective of calculating the necessary time spacing between two consecutive departing aircraft in order to fulfil all required spacing and separation constraints. OSD, developed in SESAR 2020 Wave 1 [1] is based on analytical models [2] to predict aircraft trajectory and speed profiles. The use of this tool by Air Traffic Controller supports the safe, consistent and efficient delivery of the required separation or spacing between consecutive departure pairs by providing the time required between departure aircraft pairs via an automated count-down timer to the tower runway controller. In order to improve OSD, this paper introduces the enhanced Optimised Spacing Delivery (further referred to as eOSD) tool which builds on the OSD tool using Machine Learning techniques to make more accurate predictions of aircraft behaviour (e.g. trajectory/climb profile, speed profile) and wind on the initial departure path, so further optimising spacing delivery between consecutive departures. Zurich airport data were used to develop and asses the performance of the eOSD tool compared to the OSD tool.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2526/1/012108</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2023-06, Vol.2526 (1), p.12108
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2830917847
source IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air traffic controllers
Aircraft
Airports
Machine learning
Physics
Separation
Traffic speed
Trajectories
title Machine Learning Supporting Enhanced Optimized Spacing Delivery between Consecutive Departing Aircraft
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Supporting%20Enhanced%20Optimized%20Spacing%20Delivery%20between%20Consecutive%20Departing%20Aircraft&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=De%20Petris,%20L&rft.date=2023-06-01&rft.volume=2526&rft.issue=1&rft.spage=12108&rft.pages=12108-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2526/1/012108&rft_dat=%3Cproquest_iop_j%3E2830917847%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830917847&rft_id=info:pmid/&rfr_iscdi=true