Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks

Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J.UCS (Annual print and CD-ROM archive ed.) 2022-01, Vol.28 (10), p.1108-1133
Hauptverfasser: Yalçın, Sercan, Eşit, Musa, Yuce, Mehmet İshak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1133
container_issue 10
container_start_page 1108
container_title J.UCS (Annual print and CD-ROM archive ed.)
container_volume 28
creator Yalçın, Sercan
Eşit, Musa
Yuce, Mehmet İshak
description Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.
doi_str_mv 10.3897/jucs.82370
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2830891741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777671347</galeid><doaj_id>oai_doaj_org_article_9b3a2b89ca664be89a879710d446fc43</doaj_id><sourcerecordid>A777671347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6b36d1baece9656b77d32e271d1bf36f0d364df543257780e8363c0d176862b73</originalsourceid><addsrcrecordid>eNo9kV9rHCEUxYfSQtKkL_kEQt8Ku9XR8c9jWNo0EOhLC30TR68bt7M6VZel_Qj51HUyIfjg5Xj8cS6n624I3lKpxOfDyZat7KnAb7pLrJjccMXl29d5-HXRvS_lgHHPuZKX3dNuCkdT05T2wZoJzSabI1TIBUGpy1NIEY2mgENtMLkGH2xozhArTFPYQ7SAKtjHGP6coKBzqI8LpgY7ASpnk48ozQ0V_q0wEx1yADOKcMoNFKGeU_5drrt33kwFPrzcV93Pr19-7L5tHr7f3e9uHzaWDqpu-Ei5I6MBC4oPfBTC0R56QZroKffYUc6cHxjtByEkBkk5tdgRwSXvR0GvuvuV65I56Dm3JfNfnUzQz0LKe_2SXquRmn6UyhrO2QhSGSmUINgxxr1ltLE-rqw5p2X7qg_plGOLr3tJsVREMNJc29W1Nw0aok81G9uOg2OwKYIPTb8VQnBBKFsiflo_2JxKyeBfYxKsl6L1UrR-Lpr-B-YWns0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830891741</pqid></control><display><type>article</type><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</creator><creatorcontrib>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</creatorcontrib><description>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</description><identifier>ISSN: 0948-695X</identifier><identifier>EISSN: 0948-6968</identifier><identifier>DOI: 10.3897/jucs.82370</identifier><language>eng</language><publisher>Bristol: Pensoft Publishers</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Artificial neural networks ; Climate ; Climate estimation ; Climatic changes ; Deep ; Flood management ; Humidity ; Machine learning ; Mathematical models ; Mathematical optimization ; Methods ; Neural networks ; Organic farming ; Parameter estimation ; Particle swarm optimization ; Precipitation ; Relative humidity ; Root-mean-square errors ; Swarm intelligence ; Time series ; Water management</subject><ispartof>J.UCS (Annual print and CD-ROM archive ed.), 2022-01, Vol.28 (10), p.1108-1133</ispartof><rights>COPYRIGHT 2022 Pensoft Publishers</rights><rights>2022. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1420-2490 ; 0000-0003-4509-7283 ; 0000-0002-6267-9528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2830891741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21368,27903,27904,33723,43784,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Yalçın, Sercan</creatorcontrib><creatorcontrib>Eşit, Musa</creatorcontrib><creatorcontrib>Yuce, Mehmet İshak</creatorcontrib><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><title>J.UCS (Annual print and CD-ROM archive ed.)</title><description>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Climate</subject><subject>Climate estimation</subject><subject>Climatic changes</subject><subject>Deep</subject><subject>Flood management</subject><subject>Humidity</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Organic farming</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Precipitation</subject><subject>Relative humidity</subject><subject>Root-mean-square errors</subject><subject>Swarm intelligence</subject><subject>Time series</subject><subject>Water management</subject><issn>0948-695X</issn><issn>0948-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNo9kV9rHCEUxYfSQtKkL_kEQt8Ku9XR8c9jWNo0EOhLC30TR68bt7M6VZel_Qj51HUyIfjg5Xj8cS6n624I3lKpxOfDyZat7KnAb7pLrJjccMXl29d5-HXRvS_lgHHPuZKX3dNuCkdT05T2wZoJzSabI1TIBUGpy1NIEY2mgENtMLkGH2xozhArTFPYQ7SAKtjHGP6coKBzqI8LpgY7ASpnk48ozQ0V_q0wEx1yADOKcMoNFKGeU_5drrt33kwFPrzcV93Pr19-7L5tHr7f3e9uHzaWDqpu-Ei5I6MBC4oPfBTC0R56QZroKffYUc6cHxjtByEkBkk5tdgRwSXvR0GvuvuV65I56Dm3JfNfnUzQz0LKe_2SXquRmn6UyhrO2QhSGSmUINgxxr1ltLE-rqw5p2X7qg_plGOLr3tJsVREMNJc29W1Nw0aok81G9uOg2OwKYIPTb8VQnBBKFsiflo_2JxKyeBfYxKsl6L1UrR-Lpr-B-YWns0</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yalçın, Sercan</creator><creator>Eşit, Musa</creator><creator>Yuce, Mehmet İshak</creator><general>Pensoft Publishers</general><general>Graz University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1420-2490</orcidid><orcidid>https://orcid.org/0000-0003-4509-7283</orcidid><orcidid>https://orcid.org/0000-0002-6267-9528</orcidid></search><sort><creationdate>20220101</creationdate><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><author>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6b36d1baece9656b77d32e271d1bf36f0d364df543257780e8363c0d176862b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Climate</topic><topic>Climate estimation</topic><topic>Climatic changes</topic><topic>Deep</topic><topic>Flood management</topic><topic>Humidity</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Organic farming</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Precipitation</topic><topic>Relative humidity</topic><topic>Root-mean-square errors</topic><topic>Swarm intelligence</topic><topic>Time series</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalçın, Sercan</creatorcontrib><creatorcontrib>Eşit, Musa</creatorcontrib><creatorcontrib>Yuce, Mehmet İshak</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>J.UCS (Annual print and CD-ROM archive ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalçın, Sercan</au><au>Eşit, Musa</au><au>Yuce, Mehmet İshak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</atitle><jtitle>J.UCS (Annual print and CD-ROM archive ed.)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>1108</spage><epage>1133</epage><pages>1108-1133</pages><issn>0948-695X</issn><eissn>0948-6968</eissn><abstract>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</abstract><cop>Bristol</cop><pub>Pensoft Publishers</pub><doi>10.3897/jucs.82370</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1420-2490</orcidid><orcidid>https://orcid.org/0000-0003-4509-7283</orcidid><orcidid>https://orcid.org/0000-0002-6267-9528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0948-695X
ispartof J.UCS (Annual print and CD-ROM archive ed.), 2022-01, Vol.28 (10), p.1108-1133
issn 0948-695X
0948-6968
language eng
recordid cdi_proquest_journals_2830891741
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Climate
Climate estimation
Climatic changes
Deep
Flood management
Humidity
Machine learning
Mathematical models
Mathematical optimization
Methods
Neural networks
Organic farming
Parameter estimation
Particle swarm optimization
Precipitation
Relative humidity
Root-mean-square errors
Swarm intelligence
Time series
Water management
title Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatological%20parameters%20estimation%20based%20on%20artificial%20intelligence%20techniques%20with%20particle%20swarm%20optimization%20and%20deep%20neural%20networks&rft.jtitle=J.UCS%20(Annual%20print%20and%20CD-ROM%20archive%20ed.)&rft.au=Yal%C3%A7%C4%B1n,%20Sercan&rft.date=2022-01-01&rft.volume=28&rft.issue=10&rft.spage=1108&rft.epage=1133&rft.pages=1108-1133&rft.issn=0948-695X&rft.eissn=0948-6968&rft_id=info:doi/10.3897/jucs.82370&rft_dat=%3Cgale_doaj_%3EA777671347%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830891741&rft_id=info:pmid/&rft_galeid=A777671347&rft_doaj_id=oai_doaj_org_article_9b3a2b89ca664be89a879710d446fc43&rfr_iscdi=true