Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks
Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly...
Gespeichert in:
Veröffentlicht in: | J.UCS (Annual print and CD-ROM archive ed.) 2022-01, Vol.28 (10), p.1108-1133 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1133 |
---|---|
container_issue | 10 |
container_start_page | 1108 |
container_title | J.UCS (Annual print and CD-ROM archive ed.) |
container_volume | 28 |
creator | Yalçın, Sercan Eşit, Musa Yuce, Mehmet İshak |
description | Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method. |
doi_str_mv | 10.3897/jucs.82370 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2830891741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777671347</galeid><doaj_id>oai_doaj_org_article_9b3a2b89ca664be89a879710d446fc43</doaj_id><sourcerecordid>A777671347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-6b36d1baece9656b77d32e271d1bf36f0d364df543257780e8363c0d176862b73</originalsourceid><addsrcrecordid>eNo9kV9rHCEUxYfSQtKkL_kEQt8Ku9XR8c9jWNo0EOhLC30TR68bt7M6VZel_Qj51HUyIfjg5Xj8cS6n624I3lKpxOfDyZat7KnAb7pLrJjccMXl29d5-HXRvS_lgHHPuZKX3dNuCkdT05T2wZoJzSabI1TIBUGpy1NIEY2mgENtMLkGH2xozhArTFPYQ7SAKtjHGP6coKBzqI8LpgY7ASpnk48ozQ0V_q0wEx1yADOKcMoNFKGeU_5drrt33kwFPrzcV93Pr19-7L5tHr7f3e9uHzaWDqpu-Ei5I6MBC4oPfBTC0R56QZroKffYUc6cHxjtByEkBkk5tdgRwSXvR0GvuvuV65I56Dm3JfNfnUzQz0LKe_2SXquRmn6UyhrO2QhSGSmUINgxxr1ltLE-rqw5p2X7qg_plGOLr3tJsVREMNJc29W1Nw0aok81G9uOg2OwKYIPTb8VQnBBKFsiflo_2JxKyeBfYxKsl6L1UrR-Lpr-B-YWns0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830891741</pqid></control><display><type>article</type><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</creator><creatorcontrib>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</creatorcontrib><description>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</description><identifier>ISSN: 0948-695X</identifier><identifier>EISSN: 0948-6968</identifier><identifier>DOI: 10.3897/jucs.82370</identifier><language>eng</language><publisher>Bristol: Pensoft Publishers</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Artificial neural networks ; Climate ; Climate estimation ; Climatic changes ; Deep ; Flood management ; Humidity ; Machine learning ; Mathematical models ; Mathematical optimization ; Methods ; Neural networks ; Organic farming ; Parameter estimation ; Particle swarm optimization ; Precipitation ; Relative humidity ; Root-mean-square errors ; Swarm intelligence ; Time series ; Water management</subject><ispartof>J.UCS (Annual print and CD-ROM archive ed.), 2022-01, Vol.28 (10), p.1108-1133</ispartof><rights>COPYRIGHT 2022 Pensoft Publishers</rights><rights>2022. This work is licensed under https://creativecommons.org/licenses/by-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1420-2490 ; 0000-0003-4509-7283 ; 0000-0002-6267-9528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2830891741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,21368,27903,27904,33723,43784,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Yalçın, Sercan</creatorcontrib><creatorcontrib>Eşit, Musa</creatorcontrib><creatorcontrib>Yuce, Mehmet İshak</creatorcontrib><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><title>J.UCS (Annual print and CD-ROM archive ed.)</title><description>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Climate</subject><subject>Climate estimation</subject><subject>Climatic changes</subject><subject>Deep</subject><subject>Flood management</subject><subject>Humidity</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Mathematical optimization</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Organic farming</subject><subject>Parameter estimation</subject><subject>Particle swarm optimization</subject><subject>Precipitation</subject><subject>Relative humidity</subject><subject>Root-mean-square errors</subject><subject>Swarm intelligence</subject><subject>Time series</subject><subject>Water management</subject><issn>0948-695X</issn><issn>0948-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNo9kV9rHCEUxYfSQtKkL_kEQt8Ku9XR8c9jWNo0EOhLC30TR68bt7M6VZel_Qj51HUyIfjg5Xj8cS6n624I3lKpxOfDyZat7KnAb7pLrJjccMXl29d5-HXRvS_lgHHPuZKX3dNuCkdT05T2wZoJzSabI1TIBUGpy1NIEY2mgENtMLkGH2xozhArTFPYQ7SAKtjHGP6coKBzqI8LpgY7ASpnk48ozQ0V_q0wEx1yADOKcMoNFKGeU_5drrt33kwFPrzcV93Pr19-7L5tHr7f3e9uHzaWDqpu-Ei5I6MBC4oPfBTC0R56QZroKffYUc6cHxjtByEkBkk5tdgRwSXvR0GvuvuV65I56Dm3JfNfnUzQz0LKe_2SXquRmn6UyhrO2QhSGSmUINgxxr1ltLE-rqw5p2X7qg_plGOLr3tJsVREMNJc29W1Nw0aok81G9uOg2OwKYIPTb8VQnBBKFsiflo_2JxKyeBfYxKsl6L1UrR-Lpr-B-YWns0</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yalçın, Sercan</creator><creator>Eşit, Musa</creator><creator>Yuce, Mehmet İshak</creator><general>Pensoft Publishers</general><general>Graz University of Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1420-2490</orcidid><orcidid>https://orcid.org/0000-0003-4509-7283</orcidid><orcidid>https://orcid.org/0000-0002-6267-9528</orcidid></search><sort><creationdate>20220101</creationdate><title>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</title><author>Yalçın, Sercan ; Eşit, Musa ; Yuce, Mehmet İshak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-6b36d1baece9656b77d32e271d1bf36f0d364df543257780e8363c0d176862b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Climate</topic><topic>Climate estimation</topic><topic>Climatic changes</topic><topic>Deep</topic><topic>Flood management</topic><topic>Humidity</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Mathematical optimization</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Organic farming</topic><topic>Parameter estimation</topic><topic>Particle swarm optimization</topic><topic>Precipitation</topic><topic>Relative humidity</topic><topic>Root-mean-square errors</topic><topic>Swarm intelligence</topic><topic>Time series</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalçın, Sercan</creatorcontrib><creatorcontrib>Eşit, Musa</creatorcontrib><creatorcontrib>Yuce, Mehmet İshak</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>J.UCS (Annual print and CD-ROM archive ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalçın, Sercan</au><au>Eşit, Musa</au><au>Yuce, Mehmet İshak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks</atitle><jtitle>J.UCS (Annual print and CD-ROM archive ed.)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>1108</spage><epage>1133</epage><pages>1108-1133</pages><issn>0948-695X</issn><eissn>0948-6968</eissn><abstract>Climate forecasting plays an important role for human life in many areas such as water management, agriculture, natural hazards including drought and flood, tourism, business, and regional investment. Estimating these data is a difficult task as the time series climate parameter values vary monthly and seasonally. Therefore, predicting climate parameters based on learning and artificial intelligence is important to long-term efficient results in these fields. For this purpose, in this study, a time-series based Long Short-Term Memory (LSTM) deep neural network is proposed to predict future climate in Çankırı and Adıyaman cities in Turkey. With the help of this network, the average temperature, relative humidity, and precipitation values, which are known as the most effective climate parameters, have been estimated. An improved Particle Swarm Optimization (PSO) technique is also proposed to optimize input weight values of the LSTM deep network, and reduce the estimation errors. The proposed algorithm is compared with deep models of LSTM variants based on Root Mean Square Error (RMSE), Mean Absolute Deviation (MADE), and Mean Absolute Percentage Error (MAPE) metrics. The proposed adaptive LSTM-PSO and non-adaptive LSTM-PSO models achieved at RMSE 0.98 and 1.05 for temperature, 1.19 and 1.27 for relative humidity, and 4.21 and 4.67 for precipitation estimation, respectively. The RMSE is %7 lower with the proposed adaptive LSTM-PSO method than proposed non-adaptive LSTM-PSO method.</abstract><cop>Bristol</cop><pub>Pensoft Publishers</pub><doi>10.3897/jucs.82370</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1420-2490</orcidid><orcidid>https://orcid.org/0000-0003-4509-7283</orcidid><orcidid>https://orcid.org/0000-0002-6267-9528</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-695X |
ispartof | J.UCS (Annual print and CD-ROM archive ed.), 2022-01, Vol.28 (10), p.1108-1133 |
issn | 0948-695X 0948-6968 |
language | eng |
recordid | cdi_proquest_journals_2830891741 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Analysis Artificial intelligence Artificial neural networks Climate Climate estimation Climatic changes Deep Flood management Humidity Machine learning Mathematical models Mathematical optimization Methods Neural networks Organic farming Parameter estimation Particle swarm optimization Precipitation Relative humidity Root-mean-square errors Swarm intelligence Time series Water management |
title | Climatological parameters estimation based on artificial intelligence techniques with particle swarm optimization and deep neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatological%20parameters%20estimation%20based%20on%20artificial%20intelligence%20techniques%20with%20particle%20swarm%20optimization%20and%20deep%20neural%20networks&rft.jtitle=J.UCS%20(Annual%20print%20and%20CD-ROM%20archive%20ed.)&rft.au=Yal%C3%A7%C4%B1n,%20Sercan&rft.date=2022-01-01&rft.volume=28&rft.issue=10&rft.spage=1108&rft.epage=1133&rft.pages=1108-1133&rft.issn=0948-695X&rft.eissn=0948-6968&rft_id=info:doi/10.3897/jucs.82370&rft_dat=%3Cgale_doaj_%3EA777671347%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830891741&rft_id=info:pmid/&rft_galeid=A777671347&rft_doaj_id=oai_doaj_org_article_9b3a2b89ca664be89a879710d446fc43&rfr_iscdi=true |