Pressure-tuned quantum criticality in the large-\(D\) antiferromagnet DTN

Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Kirill Yu Povarov, Graf, David E, Hauspurg, Andreas, Zherlitsyn, Sergei, Wosnitza, Joachim, Sakurai, Takahiro, Ohta, Hitoshi, Kimura, Shojiro, Nojiri, Hiroyuki, Garlea, V Ovidiu, Zheludev, Andrey, Paduan-Filho, Armando, Nicklas, Michael, Zvyagin, Sergei A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Strongly correlated spin systems can be driven to quantum critical points via various routes. In particular, gapped quantum antiferromagnets can undergo phase transitions into a magnetically ordered state with applied pressure or magnetic field, acting as tuning parameters. These transitions are characterized by \(z=1\) or \(z=2\) dynamical critical exponents, determined by the linear and quadratic low-energy dispersion of spin excitations, respectively. Employing high-frequency susceptibility and ultrasound techniques, we demonstrate that the tetragonal easy-plane quantum antiferromagnet NiCl\(_{2}\cdot\)4SC(NH\(_2\))\(_2\) (aka DTN) undergoes a spin-gap closure transition at about \(4.2\) kbar, resulting in a pressure-induced magnetic ordering. The studies are complemented by high-pressure-electron spin-resonance measurements confirming the proposed scenario. Powder neutron diffraction measurements revealed that no lattice distortion occurs at this pressure and the high spin symmetry is preserved, establishing DTN as a perfect platform to investigate \(z=1\) quantum critical phenomena. The experimental observations are supported by DMRG calculations, allowing us to quantitatively describe the pressure-driven evolution of critical fields and spin-Hamiltonian parameters in DTN.
ISSN:2331-8422
DOI:10.48550/arxiv.2306.15450