Non-conforming fibre-reinforced green polypropylene composite panels: a case study

Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of material cycles and waste management 2023-07, Vol.25 (4), p.2025-2036
Hauptverfasser: Akemal, M. Z. Nabilah, Kamal, M. Y. Md Fauzan, Famiza, A. L., Asiah, M. N., Fadli, M. Z. Sharil, Fetri, Z. Mohamad, Natasha, M. Z. Nurul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2036
container_issue 4
container_start_page 2025
container_title Journal of material cycles and waste management
container_volume 25
creator Akemal, M. Z. Nabilah
Kamal, M. Y. Md Fauzan
Famiza, A. L.
Asiah, M. N.
Fadli, M. Z. Sharil
Fetri, Z. Mohamad
Natasha, M. Z. Nurul
description Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA H . This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.
doi_str_mv 10.1007/s10163-023-01651-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830492104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830492104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FM0iatN1n8B4uC6Dlk0-nSpZvUpHvotzdawZuHYYbhvTfDj5BL4NfAub5JwEFJxkUuUCUwdUQWoABYJYQ-znMhK1bUpT4lZyntOBc1l3pB3l6CZy74NsR957e07TYRWcTue-OwoduI6OkQ-mmIYZh69Ehd2A8hdSPSwXrs0y211NmENI2HZjonJ63tE1789iX5eLh_Xz2x9evj8-puzZzQfGRuU6GWyrZOOg2FcJWSKHlZauRKW2uVahoJpW641RJbW9SFayoErCtZgpVLcjXn5sc-D5hGswuH6PNJIyrJi1oAL7JKzCoXQ0oRWzPEbm_jZICbb3ZmZmcyO_PDzqhskrMpZbHfYvyL_sf1BfUQclk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830492104</pqid></control><display><type>article</type><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</creator><creatorcontrib>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</creatorcontrib><description>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA H . This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-023-01651-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ash ; Bottom ash ; By products ; Case studies ; Caustic soda ; Civil Engineering ; Coal ; Composite materials ; Engineering ; Environmental impact ; Environmental Management ; Fiber composites ; Fiber reinforced polymers ; Fly ash ; Landfill ; Landfills ; Mechanical properties ; Nanofibers ; Optimization ; Original Article ; Particle size ; Particulate composites ; Pollutant removal ; Polymer matrix composites ; Polymers ; Polypropylene ; Power plants ; Sodium ; Stainless steel ; Surfactants ; Thermal properties ; Thermodynamic properties ; Waste disposal sites ; Waste Management/Waste Technology ; Wastewater</subject><ispartof>Journal of material cycles and waste management, 2023-07, Vol.25 (4), p.2025-2036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</cites><orcidid>0000-0002-8027-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-023-01651-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-023-01651-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akemal, M. Z. Nabilah</creatorcontrib><creatorcontrib>Kamal, M. Y. Md Fauzan</creatorcontrib><creatorcontrib>Famiza, A. L.</creatorcontrib><creatorcontrib>Asiah, M. N.</creatorcontrib><creatorcontrib>Fadli, M. Z. Sharil</creatorcontrib><creatorcontrib>Fetri, Z. Mohamad</creatorcontrib><creatorcontrib>Natasha, M. Z. Nurul</creatorcontrib><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA H . This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</description><subject>Ash</subject><subject>Bottom ash</subject><subject>By products</subject><subject>Case studies</subject><subject>Caustic soda</subject><subject>Civil Engineering</subject><subject>Coal</subject><subject>Composite materials</subject><subject>Engineering</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fly ash</subject><subject>Landfill</subject><subject>Landfills</subject><subject>Mechanical properties</subject><subject>Nanofibers</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Pollutant removal</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Power plants</subject><subject>Sodium</subject><subject>Stainless steel</subject><subject>Surfactants</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Waste disposal sites</subject><subject>Waste Management/Waste Technology</subject><subject>Wastewater</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FM0iatN1n8B4uC6Dlk0-nSpZvUpHvotzdawZuHYYbhvTfDj5BL4NfAub5JwEFJxkUuUCUwdUQWoABYJYQ-znMhK1bUpT4lZyntOBc1l3pB3l6CZy74NsR957e07TYRWcTue-OwoduI6OkQ-mmIYZh69Ehd2A8hdSPSwXrs0y211NmENI2HZjonJ63tE1789iX5eLh_Xz2x9evj8-puzZzQfGRuU6GWyrZOOg2FcJWSKHlZauRKW2uVahoJpW641RJbW9SFayoErCtZgpVLcjXn5sc-D5hGswuH6PNJIyrJi1oAL7JKzCoXQ0oRWzPEbm_jZICbb3ZmZmcyO_PDzqhskrMpZbHfYvyL_sf1BfUQclk</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Akemal, M. Z. Nabilah</creator><creator>Kamal, M. Y. Md Fauzan</creator><creator>Famiza, A. L.</creator><creator>Asiah, M. N.</creator><creator>Fadli, M. Z. Sharil</creator><creator>Fetri, Z. Mohamad</creator><creator>Natasha, M. Z. Nurul</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8027-871X</orcidid></search><sort><creationdate>20230701</creationdate><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><author>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ash</topic><topic>Bottom ash</topic><topic>By products</topic><topic>Case studies</topic><topic>Caustic soda</topic><topic>Civil Engineering</topic><topic>Coal</topic><topic>Composite materials</topic><topic>Engineering</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fly ash</topic><topic>Landfill</topic><topic>Landfills</topic><topic>Mechanical properties</topic><topic>Nanofibers</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Pollutant removal</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Power plants</topic><topic>Sodium</topic><topic>Stainless steel</topic><topic>Surfactants</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Waste disposal sites</topic><topic>Waste Management/Waste Technology</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akemal, M. Z. Nabilah</creatorcontrib><creatorcontrib>Kamal, M. Y. Md Fauzan</creatorcontrib><creatorcontrib>Famiza, A. L.</creatorcontrib><creatorcontrib>Asiah, M. N.</creatorcontrib><creatorcontrib>Fadli, M. Z. Sharil</creatorcontrib><creatorcontrib>Fetri, Z. Mohamad</creatorcontrib><creatorcontrib>Natasha, M. Z. Nurul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akemal, M. Z. Nabilah</au><au>Kamal, M. Y. Md Fauzan</au><au>Famiza, A. L.</au><au>Asiah, M. N.</au><au>Fadli, M. Z. Sharil</au><au>Fetri, Z. Mohamad</au><au>Natasha, M. Z. Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>2025</spage><epage>2036</epage><pages>2025-2036</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA H . This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-023-01651-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8027-871X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-4957
ispartof Journal of material cycles and waste management, 2023-07, Vol.25 (4), p.2025-2036
issn 1438-4957
1611-8227
language eng
recordid cdi_proquest_journals_2830492104
source SpringerLink Journals - AutoHoldings
subjects Ash
Bottom ash
By products
Case studies
Caustic soda
Civil Engineering
Coal
Composite materials
Engineering
Environmental impact
Environmental Management
Fiber composites
Fiber reinforced polymers
Fly ash
Landfill
Landfills
Mechanical properties
Nanofibers
Optimization
Original Article
Particle size
Particulate composites
Pollutant removal
Polymer matrix composites
Polymers
Polypropylene
Power plants
Sodium
Stainless steel
Surfactants
Thermal properties
Thermodynamic properties
Waste disposal sites
Waste Management/Waste Technology
Wastewater
title Non-conforming fibre-reinforced green polypropylene composite panels: a case study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-conforming%20fibre-reinforced%20green%20polypropylene%20composite%20panels:%20a%20case%20study&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Akemal,%20M.%20Z.%20Nabilah&rft.date=2023-07-01&rft.volume=25&rft.issue=4&rft.spage=2025&rft.epage=2036&rft.pages=2025-2036&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-023-01651-6&rft_dat=%3Cproquest_cross%3E2830492104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830492104&rft_id=info:pmid/&rfr_iscdi=true