Non-conforming fibre-reinforced green polypropylene composite panels: a case study
Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very fe...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2023-07, Vol.25 (4), p.2025-2036 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2036 |
---|---|
container_issue | 4 |
container_start_page | 2025 |
container_title | Journal of material cycles and waste management |
container_volume | 25 |
creator | Akemal, M. Z. Nabilah Kamal, M. Y. Md Fauzan Famiza, A. L. Asiah, M. N. Fadli, M. Z. Sharil Fetri, Z. Mohamad Natasha, M. Z. Nurul |
description | Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA
H
. This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater. |
doi_str_mv | 10.1007/s10163-023-01651-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830492104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830492104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FM0iatN1n8B4uC6Dlk0-nSpZvUpHvotzdawZuHYYbhvTfDj5BL4NfAub5JwEFJxkUuUCUwdUQWoABYJYQ-znMhK1bUpT4lZyntOBc1l3pB3l6CZy74NsR957e07TYRWcTue-OwoduI6OkQ-mmIYZh69Ehd2A8hdSPSwXrs0y211NmENI2HZjonJ63tE1789iX5eLh_Xz2x9evj8-puzZzQfGRuU6GWyrZOOg2FcJWSKHlZauRKW2uVahoJpW641RJbW9SFayoErCtZgpVLcjXn5sc-D5hGswuH6PNJIyrJi1oAL7JKzCoXQ0oRWzPEbm_jZICbb3ZmZmcyO_PDzqhskrMpZbHfYvyL_sf1BfUQclk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830492104</pqid></control><display><type>article</type><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</creator><creatorcontrib>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</creatorcontrib><description>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA
H
. This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-023-01651-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ash ; Bottom ash ; By products ; Case studies ; Caustic soda ; Civil Engineering ; Coal ; Composite materials ; Engineering ; Environmental impact ; Environmental Management ; Fiber composites ; Fiber reinforced polymers ; Fly ash ; Landfill ; Landfills ; Mechanical properties ; Nanofibers ; Optimization ; Original Article ; Particle size ; Particulate composites ; Pollutant removal ; Polymer matrix composites ; Polymers ; Polypropylene ; Power plants ; Sodium ; Stainless steel ; Surfactants ; Thermal properties ; Thermodynamic properties ; Waste disposal sites ; Waste Management/Waste Technology ; Wastewater</subject><ispartof>Journal of material cycles and waste management, 2023-07, Vol.25 (4), p.2025-2036</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</cites><orcidid>0000-0002-8027-871X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-023-01651-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-023-01651-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akemal, M. Z. Nabilah</creatorcontrib><creatorcontrib>Kamal, M. Y. Md Fauzan</creatorcontrib><creatorcontrib>Famiza, A. L.</creatorcontrib><creatorcontrib>Asiah, M. N.</creatorcontrib><creatorcontrib>Fadli, M. Z. Sharil</creatorcontrib><creatorcontrib>Fetri, Z. Mohamad</creatorcontrib><creatorcontrib>Natasha, M. Z. Nurul</creatorcontrib><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA
H
. This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</description><subject>Ash</subject><subject>Bottom ash</subject><subject>By products</subject><subject>Case studies</subject><subject>Caustic soda</subject><subject>Civil Engineering</subject><subject>Coal</subject><subject>Composite materials</subject><subject>Engineering</subject><subject>Environmental impact</subject><subject>Environmental Management</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Fly ash</subject><subject>Landfill</subject><subject>Landfills</subject><subject>Mechanical properties</subject><subject>Nanofibers</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Pollutant removal</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Power plants</subject><subject>Sodium</subject><subject>Stainless steel</subject><subject>Surfactants</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Waste disposal sites</subject><subject>Waste Management/Waste Technology</subject><subject>Wastewater</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FM0iatN1n8B4uC6Dlk0-nSpZvUpHvotzdawZuHYYbhvTfDj5BL4NfAub5JwEFJxkUuUCUwdUQWoABYJYQ-znMhK1bUpT4lZyntOBc1l3pB3l6CZy74NsR957e07TYRWcTue-OwoduI6OkQ-mmIYZh69Ehd2A8hdSPSwXrs0y211NmENI2HZjonJ63tE1789iX5eLh_Xz2x9evj8-puzZzQfGRuU6GWyrZOOg2FcJWSKHlZauRKW2uVahoJpW641RJbW9SFayoErCtZgpVLcjXn5sc-D5hGswuH6PNJIyrJi1oAL7JKzCoXQ0oRWzPEbm_jZICbb3ZmZmcyO_PDzqhskrMpZbHfYvyL_sf1BfUQclk</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Akemal, M. Z. Nabilah</creator><creator>Kamal, M. Y. Md Fauzan</creator><creator>Famiza, A. L.</creator><creator>Asiah, M. N.</creator><creator>Fadli, M. Z. Sharil</creator><creator>Fetri, Z. Mohamad</creator><creator>Natasha, M. Z. Nurul</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8027-871X</orcidid></search><sort><creationdate>20230701</creationdate><title>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</title><author>Akemal, M. Z. Nabilah ; Kamal, M. Y. Md Fauzan ; Famiza, A. L. ; Asiah, M. N. ; Fadli, M. Z. Sharil ; Fetri, Z. Mohamad ; Natasha, M. Z. Nurul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cb8e736afc3c7142c863e30557e067aaa66dd3157d0a73efa494cd8e1e98351a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ash</topic><topic>Bottom ash</topic><topic>By products</topic><topic>Case studies</topic><topic>Caustic soda</topic><topic>Civil Engineering</topic><topic>Coal</topic><topic>Composite materials</topic><topic>Engineering</topic><topic>Environmental impact</topic><topic>Environmental Management</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Fly ash</topic><topic>Landfill</topic><topic>Landfills</topic><topic>Mechanical properties</topic><topic>Nanofibers</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Pollutant removal</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Power plants</topic><topic>Sodium</topic><topic>Stainless steel</topic><topic>Surfactants</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Waste disposal sites</topic><topic>Waste Management/Waste Technology</topic><topic>Wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akemal, M. Z. Nabilah</creatorcontrib><creatorcontrib>Kamal, M. Y. Md Fauzan</creatorcontrib><creatorcontrib>Famiza, A. L.</creatorcontrib><creatorcontrib>Asiah, M. N.</creatorcontrib><creatorcontrib>Fadli, M. Z. Sharil</creatorcontrib><creatorcontrib>Fetri, Z. Mohamad</creatorcontrib><creatorcontrib>Natasha, M. Z. Nurul</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akemal, M. Z. Nabilah</au><au>Kamal, M. Y. Md Fauzan</au><au>Famiza, A. L.</au><au>Asiah, M. N.</au><au>Fadli, M. Z. Sharil</au><au>Fetri, Z. Mohamad</au><au>Natasha, M. Z. Nurul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-conforming fibre-reinforced green polypropylene composite panels: a case study</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>25</volume><issue>4</issue><spage>2025</spage><epage>2036</epage><pages>2025-2036</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>Coal Bottom Ash (CBA) is one of the byproducts of the coal combustion process in power plants that accumulates in landfills due to its porous, granular structure, which limits its use. Due to its pozzolanic properties, it has been extensively studied for the development of cement composites. Very few studies have been conducted on its potential as a reinforcing material in the development of polymer composites. This is due to its porous structure, which affects the properties of the resulting polymer composite. Therefore, in this study, the particulate structure of CBA was converted into a more compact nanofibre structure by a hydrothermal process, mCBA
H
. This study focused on the optimization of hydrothermal conditions to obtain a high density of the nanofibre structure of CBA, which can be used as fibre-reinforced filler in polypropylene, PP. Interestingly, a compact nanofibre structure of CBA was successfully obtained by hydrothermal process. Unfortunately, a weaker fibre-reinforced composite of PP was obtained due to the decomposition of the unstable mineral structures formed under strong alkaline medium, resulting in poor mechanical properties and lower thermal properties than the unmodified system. However, this hydrothermally modified CBA can also be used for the removal of pollutants from wastewater.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-023-01651-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8027-871X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2023-07, Vol.25 (4), p.2025-2036 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_journals_2830492104 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ash Bottom ash By products Case studies Caustic soda Civil Engineering Coal Composite materials Engineering Environmental impact Environmental Management Fiber composites Fiber reinforced polymers Fly ash Landfill Landfills Mechanical properties Nanofibers Optimization Original Article Particle size Particulate composites Pollutant removal Polymer matrix composites Polymers Polypropylene Power plants Sodium Stainless steel Surfactants Thermal properties Thermodynamic properties Waste disposal sites Waste Management/Waste Technology Wastewater |
title | Non-conforming fibre-reinforced green polypropylene composite panels: a case study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-conforming%20fibre-reinforced%20green%20polypropylene%20composite%20panels:%20a%20case%20study&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Akemal,%20M.%20Z.%20Nabilah&rft.date=2023-07-01&rft.volume=25&rft.issue=4&rft.spage=2025&rft.epage=2036&rft.pages=2025-2036&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-023-01651-6&rft_dat=%3Cproquest_cross%3E2830492104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830492104&rft_id=info:pmid/&rfr_iscdi=true |