Routh Zero Location Tests Unhampered by Nonessential Singularities
The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2023-07, Vol.70 (7), p.1-14 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. I, Regular papers |
container_volume | 70 |
creator | Bistritz, Yuval |
description | The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial P(s) of degree n a sequence of length \leq n+1 of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to P(s) always a sequence of exactly n+1 para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence. |
doi_str_mv | 10.1109/TCSI.2023.3272638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830417182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10132010</ieee_id><sourcerecordid>2830417182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqXwA5AYIjGn-O4Sxxmh4kuqQKLtwhI56ZmmauNiJ0P_PYnagelueN73To8QtyAnADJ_WEzn7xOUSBPCDBXpMzGCNNWx1FKdD3uSx5pQX4qrEDZSYi4JRuLpy3XtOvpm76KZq0xbuyZacGhDtGzWZrdnz6uoPEQfruEQuGlrs43mdfPTbY2v25rDtbiwZhv45jTHYvnyvJi-xbPP1_fp4yyuMFFtXHFiGbVa5WmCpCqrE8gkI6QSAZSlihSVlIHFTFlLOi8NmSpBZDZlDjQW98fevXe_Xf9isXGdb_qTBWqSfRto7Ck4UpV3IXi2xd7XO-MPBchiUFUMqopBVXFS1Wfujpmamf_xQChB0h_gR2RP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417182</pqid></control><display><type>article</type><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Yuval</creator><creatorcontrib>Bistritz, Yuval</creatorcontrib><description><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3272638</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arithmetic ; Circuit stability ; Coefficient of variation ; Indexes ; Inspection ; linear systems ; network positivity ; Numerical stability ; Polynomials ; Quotients ; Singularities ; Stability ; Stability criteria ; Stability tests ; Testing ; the Routh-Hurwitz problem</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2023-07, Vol.70 (7), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</cites><orcidid>0000-0003-0120-4219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10132010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10132010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bistritz, Yuval</creatorcontrib><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></description><subject>Arithmetic</subject><subject>Circuit stability</subject><subject>Coefficient of variation</subject><subject>Indexes</subject><subject>Inspection</subject><subject>linear systems</subject><subject>network positivity</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Quotients</subject><subject>Singularities</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Stability tests</subject><subject>Testing</subject><subject>the Routh-Hurwitz problem</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqXwA5AYIjGn-O4Sxxmh4kuqQKLtwhI56ZmmauNiJ0P_PYnagelueN73To8QtyAnADJ_WEzn7xOUSBPCDBXpMzGCNNWx1FKdD3uSx5pQX4qrEDZSYi4JRuLpy3XtOvpm76KZq0xbuyZacGhDtGzWZrdnz6uoPEQfruEQuGlrs43mdfPTbY2v25rDtbiwZhv45jTHYvnyvJi-xbPP1_fp4yyuMFFtXHFiGbVa5WmCpCqrE8gkI6QSAZSlihSVlIHFTFlLOi8NmSpBZDZlDjQW98fevXe_Xf9isXGdb_qTBWqSfRto7Ck4UpV3IXi2xd7XO-MPBchiUFUMqopBVXFS1Wfujpmamf_xQChB0h_gR2RP</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bistritz, Yuval</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></search><sort><creationdate>20230701</creationdate><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><author>Bistritz, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arithmetic</topic><topic>Circuit stability</topic><topic>Coefficient of variation</topic><topic>Indexes</topic><topic>Inspection</topic><topic>linear systems</topic><topic>network positivity</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Quotients</topic><topic>Singularities</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Stability tests</topic><topic>Testing</topic><topic>the Routh-Hurwitz problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Yuval</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Yuval</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Routh Zero Location Tests Unhampered by Nonessential Singularities</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3272638</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-8328 |
ispartof | IEEE transactions on circuits and systems. I, Regular papers, 2023-07, Vol.70 (7), p.1-14 |
issn | 1549-8328 1558-0806 |
language | eng |
recordid | cdi_proquest_journals_2830417182 |
source | IEEE Electronic Library (IEL) |
subjects | Arithmetic Circuit stability Coefficient of variation Indexes Inspection linear systems network positivity Numerical stability Polynomials Quotients Singularities Stability Stability criteria Stability tests Testing the Routh-Hurwitz problem |
title | Routh Zero Location Tests Unhampered by Nonessential Singularities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Routh%20Zero%20Location%20Tests%20Unhampered%20by%20Nonessential%20Singularities&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Bistritz,%20Yuval&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3272638&rft_dat=%3Cproquest_RIE%3E2830417182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830417182&rft_id=info:pmid/&rft_ieee_id=10132010&rfr_iscdi=true |