Routh Zero Location Tests Unhampered by Nonessential Singularities

The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2023-07, Vol.70 (7), p.1-14
1. Verfasser: Bistritz, Yuval
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 7
container_start_page 1
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 70
creator Bistritz, Yuval
description The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial P(s) of degree n a sequence of length \leq n+1 of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to P(s) always a sequence of exactly n+1 para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.
doi_str_mv 10.1109/TCSI.2023.3272638
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830417182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10132010</ieee_id><sourcerecordid>2830417182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqXwA5AYIjGn-O4Sxxmh4kuqQKLtwhI56ZmmauNiJ0P_PYnagelueN73To8QtyAnADJ_WEzn7xOUSBPCDBXpMzGCNNWx1FKdD3uSx5pQX4qrEDZSYi4JRuLpy3XtOvpm76KZq0xbuyZacGhDtGzWZrdnz6uoPEQfruEQuGlrs43mdfPTbY2v25rDtbiwZhv45jTHYvnyvJi-xbPP1_fp4yyuMFFtXHFiGbVa5WmCpCqrE8gkI6QSAZSlihSVlIHFTFlLOi8NmSpBZDZlDjQW98fevXe_Xf9isXGdb_qTBWqSfRto7Ck4UpV3IXi2xd7XO-MPBchiUFUMqopBVXFS1Wfujpmamf_xQChB0h_gR2RP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417182</pqid></control><display><type>article</type><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><source>IEEE Electronic Library (IEL)</source><creator>Bistritz, Yuval</creator><creatorcontrib>Bistritz, Yuval</creatorcontrib><description><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3272638</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arithmetic ; Circuit stability ; Coefficient of variation ; Indexes ; Inspection ; linear systems ; network positivity ; Numerical stability ; Polynomials ; Quotients ; Singularities ; Stability ; Stability criteria ; Stability tests ; Testing ; the Routh-Hurwitz problem</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2023-07, Vol.70 (7), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</cites><orcidid>0000-0003-0120-4219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10132010$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10132010$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bistritz, Yuval</creatorcontrib><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></description><subject>Arithmetic</subject><subject>Circuit stability</subject><subject>Coefficient of variation</subject><subject>Indexes</subject><subject>Inspection</subject><subject>linear systems</subject><subject>network positivity</subject><subject>Numerical stability</subject><subject>Polynomials</subject><subject>Quotients</subject><subject>Singularities</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Stability tests</subject><subject>Testing</subject><subject>the Routh-Hurwitz problem</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqXwA5AYIjGn-O4Sxxmh4kuqQKLtwhI56ZmmauNiJ0P_PYnagelueN73To8QtyAnADJ_WEzn7xOUSBPCDBXpMzGCNNWx1FKdD3uSx5pQX4qrEDZSYi4JRuLpy3XtOvpm76KZq0xbuyZacGhDtGzWZrdnz6uoPEQfruEQuGlrs43mdfPTbY2v25rDtbiwZhv45jTHYvnyvJi-xbPP1_fp4yyuMFFtXHFiGbVa5WmCpCqrE8gkI6QSAZSlihSVlIHFTFlLOi8NmSpBZDZlDjQW98fevXe_Xf9isXGdb_qTBWqSfRto7Ck4UpV3IXi2xd7XO-MPBchiUFUMqopBVXFS1Wfujpmamf_xQChB0h_gR2RP</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Bistritz, Yuval</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></search><sort><creationdate>20230701</creationdate><title>Routh Zero Location Tests Unhampered by Nonessential Singularities</title><author>Bistritz, Yuval</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ce4fe286d954236cf84170e21502116f3c363b371f276ff389ba3ac422eeab913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arithmetic</topic><topic>Circuit stability</topic><topic>Coefficient of variation</topic><topic>Indexes</topic><topic>Inspection</topic><topic>linear systems</topic><topic>network positivity</topic><topic>Numerical stability</topic><topic>Polynomials</topic><topic>Quotients</topic><topic>Singularities</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Stability tests</topic><topic>Testing</topic><topic>the Routh-Hurwitz problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bistritz, Yuval</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bistritz, Yuval</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Routh Zero Location Tests Unhampered by Nonessential Singularities</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract><![CDATA[The generalization of the Routh stability test to the corresponding zero location problem of determining how many of the zeros of a polynomial have negative real parts, positive real parts, or are purely imaginary encountered intensive and controversial activity about overcoming singular cases. This paper revisits this problem and presents two (MaxQ and LinQ) ZL methods for an arbitrary complex polynomial. The first method produces for an investigated polynomial <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> of degree <inline-formula> <tex-math notation="LaTeX">n</tex-math> </inline-formula> a sequence of length <inline-formula> <tex-math notation="LaTeX">\leq </tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> of para-even or para-odd (para-paritic) polynomials of descending degrees obtained by a polynomial remainder routine with quotients of maximal degrees. The second method uses successively linear quotients for the reduction of degrees and thus assign to <inline-formula> <tex-math notation="LaTeX">P(s)</tex-math> </inline-formula> always a sequence of exactly <inline-formula> <tex-math notation="LaTeX">n+1</tex-math> </inline-formula> para-paritic polynomials. Previous so-called first-type singularities become "non-essential singularities" in the sense that they are now absorbed into modified forms of the polynomial recursions. The distribution of zeros with respect to the imaginary axis is extracted in both methods by sign variation rules posed on the leading coefficients (that stay real when testing a complex polynomial as well) of the polynomials in the sequence.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3272638</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0120-4219</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2023-07, Vol.70 (7), p.1-14
issn 1549-8328
1558-0806
language eng
recordid cdi_proquest_journals_2830417182
source IEEE Electronic Library (IEL)
subjects Arithmetic
Circuit stability
Coefficient of variation
Indexes
Inspection
linear systems
network positivity
Numerical stability
Polynomials
Quotients
Singularities
Stability
Stability criteria
Stability tests
Testing
the Routh-Hurwitz problem
title Routh Zero Location Tests Unhampered by Nonessential Singularities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A31%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Routh%20Zero%20Location%20Tests%20Unhampered%20by%20Nonessential%20Singularities&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Bistritz,%20Yuval&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3272638&rft_dat=%3Cproquest_RIE%3E2830417182%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830417182&rft_id=info:pmid/&rft_ieee_id=10132010&rfr_iscdi=true