Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional

In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-07, Vol.70 (7), p.1-1
Hauptverfasser: Fan, Yu-Long, Xu, Jin-Meng, Zhang, Chuan-Ke, Liu, Yunfan, He, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 7
container_start_page 1
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 70
creator Fan, Yu-Long
Xu, Jin-Meng
Zhang, Chuan-Ke
Liu, Yunfan
He, Yong
description In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.
doi_str_mv 10.1109/TCSII.2023.3237560
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830417129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018493</ieee_id><sourcerecordid>2830417129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwA4iFJdYp9jgvL1FpoSIqiBaxjJx0Am7TuNhJHx_Af-PSLljNHc25o5nredeM9hij4m7an4xGPaDAexx4HEb0xOuwMEx8Hgt2uteB8OM4iM-9C2vnlIKgHDrez2i5MnqNMzLYrnSNdaNkRSaNzFWlmh0ptSEPWMmdI8bYGjccY7PRZmHJh2q-SCrNJx4QkkvrMF2TN9dunXxVWOBGWSTpTq7aWq_9ZyOtXtuFUmTY1kWjdC2rS--slJXFq2Pteu_DwbT_5Kcvj6P-feoXIKLGn1HIi5nIIc6BRjJIklAIxJzmUPAgASlKYFCWyKJZCAWEDIPSvQqcQRwwybve7WGv-_m7Rdtkc90ad4DNIOE0YDED4Sg4UIXR1hoss5VRS2l2GaPZPu7sL-5sH3d2jNuZbg4mhYj_DJQlgeD8F8fofaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417129</pqid></control><display><type>article</type><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</creator><creatorcontrib>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</creatorcontrib><description>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3237560</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Circuit stability ; Delay ; delayed neural networks ; Delays ; Exponential stability ; large delay ; Neural networks ; Numerical stability ; Stability criteria ; Switches ; Switching</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-07, Vol.70 (7), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</citedby><cites>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</cites><orcidid>0000-0001-6724-8105 ; 0000-0001-5691-9663 ; 0000-0001-8687-3723 ; 0000-0003-1150-8865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10018493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Yu-Long</creatorcontrib><creatorcontrib>Xu, Jin-Meng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ke</creatorcontrib><creatorcontrib>Liu, Yunfan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Circuit stability</subject><subject>Delay</subject><subject>delayed neural networks</subject><subject>Delays</subject><subject>Exponential stability</subject><subject>large delay</subject><subject>Neural networks</subject><subject>Numerical stability</subject><subject>Stability criteria</subject><subject>Switches</subject><subject>Switching</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwA4iFJdYp9jgvL1FpoSIqiBaxjJx0Am7TuNhJHx_Af-PSLljNHc25o5nredeM9hij4m7an4xGPaDAexx4HEb0xOuwMEx8Hgt2uteB8OM4iM-9C2vnlIKgHDrez2i5MnqNMzLYrnSNdaNkRSaNzFWlmh0ptSEPWMmdI8bYGjccY7PRZmHJh2q-SCrNJx4QkkvrMF2TN9dunXxVWOBGWSTpTq7aWq_9ZyOtXtuFUmTY1kWjdC2rS--slJXFq2Pteu_DwbT_5Kcvj6P-feoXIKLGn1HIi5nIIc6BRjJIklAIxJzmUPAgASlKYFCWyKJZCAWEDIPSvQqcQRwwybve7WGv-_m7Rdtkc90ad4DNIOE0YDED4Sg4UIXR1hoss5VRS2l2GaPZPu7sL-5sH3d2jNuZbg4mhYj_DJQlgeD8F8fofaw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Fan, Yu-Long</creator><creator>Xu, Jin-Meng</creator><creator>Zhang, Chuan-Ke</creator><creator>Liu, Yunfan</creator><creator>He, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6724-8105</orcidid><orcidid>https://orcid.org/0000-0001-5691-9663</orcidid><orcidid>https://orcid.org/0000-0001-8687-3723</orcidid><orcidid>https://orcid.org/0000-0003-1150-8865</orcidid></search><sort><creationdate>20230701</creationdate><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><author>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Circuit stability</topic><topic>Delay</topic><topic>delayed neural networks</topic><topic>Delays</topic><topic>Exponential stability</topic><topic>large delay</topic><topic>Neural networks</topic><topic>Numerical stability</topic><topic>Stability criteria</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yu-Long</creatorcontrib><creatorcontrib>Xu, Jin-Meng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ke</creatorcontrib><creatorcontrib>Liu, Yunfan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Yu-Long</au><au>Xu, Jin-Meng</au><au>Zhang, Chuan-Ke</au><au>Liu, Yunfan</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3237560</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6724-8105</orcidid><orcidid>https://orcid.org/0000-0001-5691-9663</orcidid><orcidid>https://orcid.org/0000-0001-8687-3723</orcidid><orcidid>https://orcid.org/0000-0003-1150-8865</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2023-07, Vol.70 (7), p.1-1
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2830417129
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Circuit stability
Delay
delayed neural networks
Delays
Exponential stability
large delay
Neural networks
Numerical stability
Stability criteria
Switches
Switching
title Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Exponential%20Stability%20for%20Delayed%20Neural%20Networks%20With%20Large%20Delay%20based%20on%20Relaxed%20Piecewise%20Lyapunov-Krasovskii%20Functional&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Fan,%20Yu-Long&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3237560&rft_dat=%3Cproquest_RIE%3E2830417129%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830417129&rft_id=info:pmid/&rft_ieee_id=10018493&rfr_iscdi=true