Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional
In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2023-07, Vol.70 (7), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 70 |
creator | Fan, Yu-Long Xu, Jin-Meng Zhang, Chuan-Ke Liu, Yunfan He, Yong |
description | In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method. |
doi_str_mv | 10.1109/TCSII.2023.3237560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830417129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018493</ieee_id><sourcerecordid>2830417129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwA4iFJdYp9jgvL1FpoSIqiBaxjJx0Am7TuNhJHx_Af-PSLljNHc25o5nredeM9hij4m7an4xGPaDAexx4HEb0xOuwMEx8Hgt2uteB8OM4iM-9C2vnlIKgHDrez2i5MnqNMzLYrnSNdaNkRSaNzFWlmh0ptSEPWMmdI8bYGjccY7PRZmHJh2q-SCrNJx4QkkvrMF2TN9dunXxVWOBGWSTpTq7aWq_9ZyOtXtuFUmTY1kWjdC2rS--slJXFq2Pteu_DwbT_5Kcvj6P-feoXIKLGn1HIi5nIIc6BRjJIklAIxJzmUPAgASlKYFCWyKJZCAWEDIPSvQqcQRwwybve7WGv-_m7Rdtkc90ad4DNIOE0YDED4Sg4UIXR1hoss5VRS2l2GaPZPu7sL-5sH3d2jNuZbg4mhYj_DJQlgeD8F8fofaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830417129</pqid></control><display><type>article</type><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</creator><creatorcontrib>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</creatorcontrib><description>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3237560</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Circuit stability ; Delay ; delayed neural networks ; Delays ; Exponential stability ; large delay ; Neural networks ; Numerical stability ; Stability criteria ; Switches ; Switching</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2023-07, Vol.70 (7), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</citedby><cites>FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</cites><orcidid>0000-0001-6724-8105 ; 0000-0001-5691-9663 ; 0000-0001-8687-3723 ; 0000-0003-1150-8865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10018493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Yu-Long</creatorcontrib><creatorcontrib>Xu, Jin-Meng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ke</creatorcontrib><creatorcontrib>Liu, Yunfan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Circuit stability</subject><subject>Delay</subject><subject>delayed neural networks</subject><subject>Delays</subject><subject>Exponential stability</subject><subject>large delay</subject><subject>Neural networks</subject><subject>Numerical stability</subject><subject>Stability criteria</subject><subject>Switches</subject><subject>Switching</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwA4iFJdYp9jgvL1FpoSIqiBaxjJx0Am7TuNhJHx_Af-PSLljNHc25o5nredeM9hij4m7an4xGPaDAexx4HEb0xOuwMEx8Hgt2uteB8OM4iM-9C2vnlIKgHDrez2i5MnqNMzLYrnSNdaNkRSaNzFWlmh0ptSEPWMmdI8bYGjccY7PRZmHJh2q-SCrNJx4QkkvrMF2TN9dunXxVWOBGWSTpTq7aWq_9ZyOtXtuFUmTY1kWjdC2rS--slJXFq2Pteu_DwbT_5Kcvj6P-feoXIKLGn1HIi5nIIc6BRjJIklAIxJzmUPAgASlKYFCWyKJZCAWEDIPSvQqcQRwwybve7WGv-_m7Rdtkc90ad4DNIOE0YDED4Sg4UIXR1hoss5VRS2l2GaPZPu7sL-5sH3d2jNuZbg4mhYj_DJQlgeD8F8fofaw</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Fan, Yu-Long</creator><creator>Xu, Jin-Meng</creator><creator>Zhang, Chuan-Ke</creator><creator>Liu, Yunfan</creator><creator>He, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6724-8105</orcidid><orcidid>https://orcid.org/0000-0001-5691-9663</orcidid><orcidid>https://orcid.org/0000-0001-8687-3723</orcidid><orcidid>https://orcid.org/0000-0003-1150-8865</orcidid></search><sort><creationdate>20230701</creationdate><title>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</title><author>Fan, Yu-Long ; Xu, Jin-Meng ; Zhang, Chuan-Ke ; Liu, Yunfan ; He, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-d02bcd9b27b206a488599eeb0b2c3482a9f212ffe16d52c251e4f0022312741a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Circuit stability</topic><topic>Delay</topic><topic>delayed neural networks</topic><topic>Delays</topic><topic>Exponential stability</topic><topic>large delay</topic><topic>Neural networks</topic><topic>Numerical stability</topic><topic>Stability criteria</topic><topic>Switches</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Yu-Long</creatorcontrib><creatorcontrib>Xu, Jin-Meng</creatorcontrib><creatorcontrib>Zhang, Chuan-Ke</creatorcontrib><creatorcontrib>Liu, Yunfan</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Yu-Long</au><au>Xu, Jin-Meng</au><au>Zhang, Chuan-Ke</au><au>Liu, Yunfan</au><au>He, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In this brief, the stability of neural networks with switching between small and large time delays is studied by developing an improved exponential stability criterion. Firstly, the delayed neural network (DNN) with small delay (SD) and large delay (LD) is modeled as a switched DNN. Then, based on an augmented piecewise Lyapunov-Krasovskii functional with LD-based terms considering relaxed switching constraints, and Wiritinger-based inequality, a stability criterion with less conservatism is developed. Finally, a numerical example is provided to demonstrate the superiority and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3237560</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6724-8105</orcidid><orcidid>https://orcid.org/0000-0001-5691-9663</orcidid><orcidid>https://orcid.org/0000-0001-8687-3723</orcidid><orcidid>https://orcid.org/0000-0003-1150-8865</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2023-07, Vol.70 (7), p.1-1 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2830417129 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Circuit stability Delay delayed neural networks Delays Exponential stability large delay Neural networks Numerical stability Stability criteria Switches Switching |
title | Improved Exponential Stability for Delayed Neural Networks With Large Delay based on Relaxed Piecewise Lyapunov-Krasovskii Functional |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Exponential%20Stability%20for%20Delayed%20Neural%20Networks%20With%20Large%20Delay%20based%20on%20Relaxed%20Piecewise%20Lyapunov-Krasovskii%20Functional&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Fan,%20Yu-Long&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3237560&rft_dat=%3Cproquest_RIE%3E2830417129%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830417129&rft_id=info:pmid/&rft_ieee_id=10018493&rfr_iscdi=true |