A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism
Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than 30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy seriously affects the health of patients and brings great economic burden to families. Therefore, this...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Ma, Yahong Huang, Zhentao Su, Jianyun Shi, Hangyu Wang, Dong Jia, Shanshan Li, Weisu |
description | Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than 30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy seriously affects the health of patients and brings great economic burden to families. Therefore, this requires an effective seizure classification and prediction method to reduce risk in epilepsy patients. Researchers proposed machine learning or deep learning methods to predict seizures. However, automatic screening of electrode channels and improvement of predictive accuracy remain a challenge. A multi-channel feature fusion model CNN-Bi-LSTM.This method only requires simple preprocessing. CNN is responsible for extracting spatial features, Bi-LSTM is responsible for extracting temporal features, and finally, two channel weights are allocated through the attention mechanism to filter out the results of the more weighted electrode channel output classification. The performance of the model is tested on the CHB-MIT dataset, and the output is divided into three categories, including normal, pre-seizure and mid-seizure. The ten-fold cross-validation average accuracy is 94.83%, the precision is 94.84%, the recall is 94.84%, the F1-score is 94.83%, and the MCC is 92.26% across CHB-MIT EEG.The ten-fold cross-validation average accuracy of UCI data set is 77.62%, the precision is 77.66%, the recall is 77.62%, the F1-score is 77.60%, and the MCC is 72.03%. The results showed that this method is superior to existing methods and can predict the EEG signals of epilepsy in advance. This work will be extended to design a removable epilepsy predictive device for real-time use. |
doi_str_mv | 10.1109/ACCESS.2023.3287927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830415638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10156816</ieee_id><doaj_id>oai_doaj_org_article_1f089d7b5d094a0dbce7f6fd01b36515</doaj_id><sourcerecordid>2830415638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-7442a6b93e61fa1c6e54e342edf66794c551511ede90a54f565a64a2dee0661e3</originalsourceid><addsrcrecordid>eNpNkV1L5DAYhcuyworrL3AvAl53zHeby7F0VJhRYfQ6ZJI3a4baziYt6L83Y2UxN0nenPOcwCmKC4IXhGB1tWyadrtdUEzZgtG6UrT6UZxSIlXJBJM_v51_Fecp7XFedR6J6rR4W6LN1I2hbF5M30OHVmDGKQJaTSkMPWru78vrUK63TxvUHkIHh_SO2vYGNZ1JKfhgzXjUmd6hxwgu2M_rZnCZdW0SOPTQo-U4Qj8_gM1BIb3-Lk686RKcf-1nxfOqfWpuy_XDzV2zXJeWYzWWFefUyJ1iIIk3xEoQHBin4LyUleJWCCIIAQcKG8G9kMJIbqgDwFISYGfF3cx1g9nrQwyvJr7rwQT9ORjiX23iGGwHmnhcK1fthMOKG-x2FiovvcNkx2SOyazLmXWIw78J0qj3wxT7_H1Na4Y5EZLVWcVmlY1DShH8_1SC9bExPTemj43pr8ay68_sCgDwzZGZuSv2Ae4fkJk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830415638</pqid></control><display><type>article</type><title>A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ma, Yahong ; Huang, Zhentao ; Su, Jianyun ; Shi, Hangyu ; Wang, Dong ; Jia, Shanshan ; Li, Weisu</creator><creatorcontrib>Ma, Yahong ; Huang, Zhentao ; Su, Jianyun ; Shi, Hangyu ; Wang, Dong ; Jia, Shanshan ; Li, Weisu</creatorcontrib><description>Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than 30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy seriously affects the health of patients and brings great economic burden to families. Therefore, this requires an effective seizure classification and prediction method to reduce risk in epilepsy patients. Researchers proposed machine learning or deep learning methods to predict seizures. However, automatic screening of electrode channels and improvement of predictive accuracy remain a challenge. A multi-channel feature fusion model CNN-Bi-LSTM.This method only requires simple preprocessing. CNN is responsible for extracting spatial features, Bi-LSTM is responsible for extracting temporal features, and finally, two channel weights are allocated through the attention mechanism to filter out the results of the more weighted electrode channel output classification. The performance of the model is tested on the CHB-MIT dataset, and the output is divided into three categories, including normal, pre-seizure and mid-seizure. The ten-fold cross-validation average accuracy is 94.83%, the precision is 94.84%, the recall is 94.84%, the F1-score is 94.83%, and the MCC is 92.26% across CHB-MIT EEG.The ten-fold cross-validation average accuracy of UCI data set is 77.62%, the precision is 77.66%, the recall is 77.62%, the F1-score is 77.60%, and the MCC is 72.03%. The results showed that this method is superior to existing methods and can predict the EEG signals of epilepsy in advance. This work will be extended to design a removable epilepsy predictive device for real-time use.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3287927</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Attention Mechanism ; Bi-Directional Long Short-Term Memory (Bi-LSTM) ; Brain modeling ; Classification ; Convolutional Neural Network (CNN) ; Convulsions & seizures ; Data mining ; Deep learning ; Electrodes ; Electroencephalogram (EEG) ; Electroencephalography ; Epilepsy ; Feature extraction ; Machine learning ; Prediction models ; Recall ; Recording ; Risk management ; Seizures</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-7442a6b93e61fa1c6e54e342edf66794c551511ede90a54f565a64a2dee0661e3</citedby><cites>FETCH-LOGICAL-c409t-7442a6b93e61fa1c6e54e342edf66794c551511ede90a54f565a64a2dee0661e3</cites><orcidid>0000-0002-3231-6371 ; 0009-0005-0880-4876 ; 0000-0002-4294-0186 ; 0000-0001-7695-8459 ; 0000-0003-4141-320X ; 0009-0009-0734-5398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10156816$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ma, Yahong</creatorcontrib><creatorcontrib>Huang, Zhentao</creatorcontrib><creatorcontrib>Su, Jianyun</creatorcontrib><creatorcontrib>Shi, Hangyu</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jia, Shanshan</creatorcontrib><creatorcontrib>Li, Weisu</creatorcontrib><title>A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism</title><title>IEEE access</title><addtitle>Access</addtitle><description>Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than 30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy seriously affects the health of patients and brings great economic burden to families. Therefore, this requires an effective seizure classification and prediction method to reduce risk in epilepsy patients. Researchers proposed machine learning or deep learning methods to predict seizures. However, automatic screening of electrode channels and improvement of predictive accuracy remain a challenge. A multi-channel feature fusion model CNN-Bi-LSTM.This method only requires simple preprocessing. CNN is responsible for extracting spatial features, Bi-LSTM is responsible for extracting temporal features, and finally, two channel weights are allocated through the attention mechanism to filter out the results of the more weighted electrode channel output classification. The performance of the model is tested on the CHB-MIT dataset, and the output is divided into three categories, including normal, pre-seizure and mid-seizure. The ten-fold cross-validation average accuracy is 94.83%, the precision is 94.84%, the recall is 94.84%, the F1-score is 94.83%, and the MCC is 92.26% across CHB-MIT EEG.The ten-fold cross-validation average accuracy of UCI data set is 77.62%, the precision is 77.66%, the recall is 77.62%, the F1-score is 77.60%, and the MCC is 72.03%. The results showed that this method is superior to existing methods and can predict the EEG signals of epilepsy in advance. This work will be extended to design a removable epilepsy predictive device for real-time use.</description><subject>Accuracy</subject><subject>Attention Mechanism</subject><subject>Bi-Directional Long Short-Term Memory (Bi-LSTM)</subject><subject>Brain modeling</subject><subject>Classification</subject><subject>Convolutional Neural Network (CNN)</subject><subject>Convulsions & seizures</subject><subject>Data mining</subject><subject>Deep learning</subject><subject>Electrodes</subject><subject>Electroencephalogram (EEG)</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Prediction models</subject><subject>Recall</subject><subject>Recording</subject><subject>Risk management</subject><subject>Seizures</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1L5DAYhcuyworrL3AvAl53zHeby7F0VJhRYfQ6ZJI3a4baziYt6L83Y2UxN0nenPOcwCmKC4IXhGB1tWyadrtdUEzZgtG6UrT6UZxSIlXJBJM_v51_Fecp7XFedR6J6rR4W6LN1I2hbF5M30OHVmDGKQJaTSkMPWru78vrUK63TxvUHkIHh_SO2vYGNZ1JKfhgzXjUmd6hxwgu2M_rZnCZdW0SOPTQo-U4Qj8_gM1BIb3-Lk686RKcf-1nxfOqfWpuy_XDzV2zXJeWYzWWFefUyJ1iIIk3xEoQHBin4LyUleJWCCIIAQcKG8G9kMJIbqgDwFISYGfF3cx1g9nrQwyvJr7rwQT9ORjiX23iGGwHmnhcK1fthMOKG-x2FiovvcNkx2SOyazLmXWIw78J0qj3wxT7_H1Na4Y5EZLVWcVmlY1DShH8_1SC9bExPTemj43pr8ay68_sCgDwzZGZuSv2Ae4fkJk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ma, Yahong</creator><creator>Huang, Zhentao</creator><creator>Su, Jianyun</creator><creator>Shi, Hangyu</creator><creator>Wang, Dong</creator><creator>Jia, Shanshan</creator><creator>Li, Weisu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3231-6371</orcidid><orcidid>https://orcid.org/0009-0005-0880-4876</orcidid><orcidid>https://orcid.org/0000-0002-4294-0186</orcidid><orcidid>https://orcid.org/0000-0001-7695-8459</orcidid><orcidid>https://orcid.org/0000-0003-4141-320X</orcidid><orcidid>https://orcid.org/0009-0009-0734-5398</orcidid></search><sort><creationdate>20230101</creationdate><title>A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism</title><author>Ma, Yahong ; Huang, Zhentao ; Su, Jianyun ; Shi, Hangyu ; Wang, Dong ; Jia, Shanshan ; Li, Weisu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-7442a6b93e61fa1c6e54e342edf66794c551511ede90a54f565a64a2dee0661e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Attention Mechanism</topic><topic>Bi-Directional Long Short-Term Memory (Bi-LSTM)</topic><topic>Brain modeling</topic><topic>Classification</topic><topic>Convolutional Neural Network (CNN)</topic><topic>Convulsions & seizures</topic><topic>Data mining</topic><topic>Deep learning</topic><topic>Electrodes</topic><topic>Electroencephalogram (EEG)</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Prediction models</topic><topic>Recall</topic><topic>Recording</topic><topic>Risk management</topic><topic>Seizures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yahong</creatorcontrib><creatorcontrib>Huang, Zhentao</creatorcontrib><creatorcontrib>Su, Jianyun</creatorcontrib><creatorcontrib>Shi, Hangyu</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Jia, Shanshan</creatorcontrib><creatorcontrib>Li, Weisu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Yahong</au><au>Huang, Zhentao</au><au>Su, Jianyun</au><au>Shi, Hangyu</au><au>Wang, Dong</au><au>Jia, Shanshan</au><au>Li, Weisu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Epilepsy is the unstable state caused by excessive discharge of brain cells. In more than 30 percent of epilepsy cases, seizures cannot be controlled with medication or surgery. Refractory epilepsy seriously affects the health of patients and brings great economic burden to families. Therefore, this requires an effective seizure classification and prediction method to reduce risk in epilepsy patients. Researchers proposed machine learning or deep learning methods to predict seizures. However, automatic screening of electrode channels and improvement of predictive accuracy remain a challenge. A multi-channel feature fusion model CNN-Bi-LSTM.This method only requires simple preprocessing. CNN is responsible for extracting spatial features, Bi-LSTM is responsible for extracting temporal features, and finally, two channel weights are allocated through the attention mechanism to filter out the results of the more weighted electrode channel output classification. The performance of the model is tested on the CHB-MIT dataset, and the output is divided into three categories, including normal, pre-seizure and mid-seizure. The ten-fold cross-validation average accuracy is 94.83%, the precision is 94.84%, the recall is 94.84%, the F1-score is 94.83%, and the MCC is 92.26% across CHB-MIT EEG.The ten-fold cross-validation average accuracy of UCI data set is 77.62%, the precision is 77.66%, the recall is 77.62%, the F1-score is 77.60%, and the MCC is 72.03%. The results showed that this method is superior to existing methods and can predict the EEG signals of epilepsy in advance. This work will be extended to design a removable epilepsy predictive device for real-time use.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3287927</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3231-6371</orcidid><orcidid>https://orcid.org/0009-0005-0880-4876</orcidid><orcidid>https://orcid.org/0000-0002-4294-0186</orcidid><orcidid>https://orcid.org/0000-0001-7695-8459</orcidid><orcidid>https://orcid.org/0000-0003-4141-320X</orcidid><orcidid>https://orcid.org/0009-0009-0734-5398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2830415638 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Attention Mechanism Bi-Directional Long Short-Term Memory (Bi-LSTM) Brain modeling Classification Convolutional Neural Network (CNN) Convulsions & seizures Data mining Deep learning Electrodes Electroencephalogram (EEG) Electroencephalography Epilepsy Feature extraction Machine learning Prediction models Recall Recording Risk management Seizures |
title | A Multi-Channel Feature Fusion CNN-Bi-LSTM Epilepsy EEG Classification and Prediction Model Based On Attention Mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A47%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Channel%20Feature%20Fusion%20CNN-Bi-LSTM%20Epilepsy%20EEG%20Classification%20and%20Prediction%20Model%20Based%20On%20Attention%20Mechanism&rft.jtitle=IEEE%20access&rft.au=Ma,%20Yahong&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3287927&rft_dat=%3Cproquest_cross%3E2830415638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830415638&rft_id=info:pmid/&rft_ieee_id=10156816&rft_doaj_id=oai_doaj_org_article_1f089d7b5d094a0dbce7f6fd01b36515&rfr_iscdi=true |