A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements
Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Chen, Xiaobo Wang, Kaiyuan Li, Zuoyong Zhang, Yu Ye, Qiaolin |
description | Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios. |
doi_str_mv | 10.1109/TIM.2023.3284929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830415239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147850</ieee_id><sourcerecordid>2830415239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xR2zHY1W-KrUgQZgjJzmLlDYOdlrof49LGFjupLv33p1-CF1SMqGU6Jt8vpwwwviEsyzVTB-hERVCJVpKdoxGhNAs0amQp-gshBUhRMlUjVCY4ie3g3WsbeXaHXzjhftKvGk_cA5tcB7P3KZbQ9-4Fk-7zjtTvWMb57k31jYVfh1kt6Y3-AWqmOb32Hq3wfMY-esFvAQTth420PbhHJ1Ysw5w8dfH6O3-Lp89Jovnh_lsukgqloo-MRyopMCl5WmVgZJQC6kyW2orRWlBaqGEsURLW3OWlpVgqq5VqWxcgAA-RtdDbnz6cwuhL1Zu69t4smAZJykVjOuoIoOq8i4ED7bofLMxfl9QUhzQFhFtcUBb_KGNlqvB0gDAPzlNVSYI_wHi83aN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830415239</pqid></control><display><type>article</type><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</creator><creatorcontrib>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</creatorcontrib><description>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3284929</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating directions method of multipliers ; Data acquisition ; Data recovery ; Intelligent transportation systems ; Iterative algorithms ; Iterative methods ; Low-rank tensor completion ; Mathematical models ; Missing data ; Optimization ; Parameters ; Self-similarity ; Sensors ; Spatial-temporal correlation ; Spatiotemporal data ; Tensors ; Traffic information ; Traffic sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</cites><orcidid>0000-0003-4087-6544 ; 0000-0003-0952-9915 ; 0000-0001-9940-1637 ; 0000-0001-9201-8977 ; 0000-0002-8793-8610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10147850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Qiaolin</creatorcontrib><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</description><subject>Alternating directions method of multipliers</subject><subject>Data acquisition</subject><subject>Data recovery</subject><subject>Intelligent transportation systems</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Low-rank tensor completion</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Self-similarity</subject><subject>Sensors</subject><subject>Spatial-temporal correlation</subject><subject>Spatiotemporal data</subject><subject>Tensors</subject><subject>Traffic information</subject><subject>Traffic sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xR2zHY1W-KrUgQZgjJzmLlDYOdlrof49LGFjupLv33p1-CF1SMqGU6Jt8vpwwwviEsyzVTB-hERVCJVpKdoxGhNAs0amQp-gshBUhRMlUjVCY4ie3g3WsbeXaHXzjhftKvGk_cA5tcB7P3KZbQ9-4Fk-7zjtTvWMb57k31jYVfh1kt6Y3-AWqmOb32Hq3wfMY-esFvAQTth420PbhHJ1Ysw5w8dfH6O3-Lp89Jovnh_lsukgqloo-MRyopMCl5WmVgZJQC6kyW2orRWlBaqGEsURLW3OWlpVgqq5VqWxcgAA-RtdDbnz6cwuhL1Zu69t4smAZJykVjOuoIoOq8i4ED7bofLMxfl9QUhzQFhFtcUBb_KGNlqvB0gDAPzlNVSYI_wHi83aN</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Xiaobo</creator><creator>Wang, Kaiyuan</creator><creator>Li, Zuoyong</creator><creator>Zhang, Yu</creator><creator>Ye, Qiaolin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0001-9201-8977</orcidid><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></search><sort><creationdate>20230101</creationdate><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><author>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternating directions method of multipliers</topic><topic>Data acquisition</topic><topic>Data recovery</topic><topic>Intelligent transportation systems</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Low-rank tensor completion</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Self-similarity</topic><topic>Sensors</topic><topic>Spatial-temporal correlation</topic><topic>Spatiotemporal data</topic><topic>Tensors</topic><topic>Traffic information</topic><topic>Traffic sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Qiaolin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaobo</au><au>Wang, Kaiyuan</au><au>Li, Zuoyong</au><au>Zhang, Yu</au><au>Ye, Qiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3284929</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0001-9201-8977</orcidid><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2830415239 |
source | IEEE Electronic Library (IEL) |
subjects | Alternating directions method of multipliers Data acquisition Data recovery Intelligent transportation systems Iterative algorithms Iterative methods Low-rank tensor completion Mathematical models Missing data Optimization Parameters Self-similarity Sensors Spatial-temporal correlation Spatiotemporal data Tensors Traffic information Traffic sensor networks |
title | A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Nonconvex%20Low-rank%20Tensor%20Completion%20Approach%20for%20Traffic%20Sensor%20Data%20Recovery%20from%20Incomplete%20Measurements&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Xiaobo&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3284929&rft_dat=%3Cproquest_RIE%3E2830415239%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830415239&rft_id=info:pmid/&rft_ieee_id=10147850&rfr_iscdi=true |