A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements

Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1
Hauptverfasser: Chen, Xiaobo, Wang, Kaiyuan, Li, Zuoyong, Zhang, Yu, Ye, Qiaolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 72
creator Chen, Xiaobo
Wang, Kaiyuan
Li, Zuoyong
Zhang, Yu
Ye, Qiaolin
description Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.
doi_str_mv 10.1109/TIM.2023.3284929
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2830415239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147850</ieee_id><sourcerecordid>2830415239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xR2zHY1W-KrUgQZgjJzmLlDYOdlrof49LGFjupLv33p1-CF1SMqGU6Jt8vpwwwviEsyzVTB-hERVCJVpKdoxGhNAs0amQp-gshBUhRMlUjVCY4ie3g3WsbeXaHXzjhftKvGk_cA5tcB7P3KZbQ9-4Fk-7zjtTvWMb57k31jYVfh1kt6Y3-AWqmOb32Hq3wfMY-esFvAQTth420PbhHJ1Ysw5w8dfH6O3-Lp89Jovnh_lsukgqloo-MRyopMCl5WmVgZJQC6kyW2orRWlBaqGEsURLW3OWlpVgqq5VqWxcgAA-RtdDbnz6cwuhL1Zu69t4smAZJykVjOuoIoOq8i4ED7bofLMxfl9QUhzQFhFtcUBb_KGNlqvB0gDAPzlNVSYI_wHi83aN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830415239</pqid></control><display><type>article</type><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</creator><creatorcontrib>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</creatorcontrib><description>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3284929</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating directions method of multipliers ; Data acquisition ; Data recovery ; Intelligent transportation systems ; Iterative algorithms ; Iterative methods ; Low-rank tensor completion ; Mathematical models ; Missing data ; Optimization ; Parameters ; Self-similarity ; Sensors ; Spatial-temporal correlation ; Spatiotemporal data ; Tensors ; Traffic information ; Traffic sensor networks</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</cites><orcidid>0000-0003-4087-6544 ; 0000-0003-0952-9915 ; 0000-0001-9940-1637 ; 0000-0001-9201-8977 ; 0000-0002-8793-8610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10147850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Qiaolin</creatorcontrib><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</description><subject>Alternating directions method of multipliers</subject><subject>Data acquisition</subject><subject>Data recovery</subject><subject>Intelligent transportation systems</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Low-rank tensor completion</subject><subject>Mathematical models</subject><subject>Missing data</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Self-similarity</subject><subject>Sensors</subject><subject>Spatial-temporal correlation</subject><subject>Spatiotemporal data</subject><subject>Tensors</subject><subject>Traffic information</subject><subject>Traffic sensor networks</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYk7xR2zHY1W-KrUgQZgjJzmLlDYOdlrof49LGFjupLv33p1-CF1SMqGU6Jt8vpwwwviEsyzVTB-hERVCJVpKdoxGhNAs0amQp-gshBUhRMlUjVCY4ie3g3WsbeXaHXzjhftKvGk_cA5tcB7P3KZbQ9-4Fk-7zjtTvWMb57k31jYVfh1kt6Y3-AWqmOb32Hq3wfMY-esFvAQTth420PbhHJ1Ysw5w8dfH6O3-Lp89Jovnh_lsukgqloo-MRyopMCl5WmVgZJQC6kyW2orRWlBaqGEsURLW3OWlpVgqq5VqWxcgAA-RtdDbnz6cwuhL1Zu69t4smAZJykVjOuoIoOq8i4ED7bofLMxfl9QUhzQFhFtcUBb_KGNlqvB0gDAPzlNVSYI_wHi83aN</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Chen, Xiaobo</creator><creator>Wang, Kaiyuan</creator><creator>Li, Zuoyong</creator><creator>Zhang, Yu</creator><creator>Ye, Qiaolin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0001-9201-8977</orcidid><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></search><sort><creationdate>20230101</creationdate><title>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</title><author>Chen, Xiaobo ; Wang, Kaiyuan ; Li, Zuoyong ; Zhang, Yu ; Ye, Qiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a3e161e36f34c8e76ed5678fb9f65bfe69575af096fd324bc527dd7b7f957e5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alternating directions method of multipliers</topic><topic>Data acquisition</topic><topic>Data recovery</topic><topic>Intelligent transportation systems</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Low-rank tensor completion</topic><topic>Mathematical models</topic><topic>Missing data</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Self-similarity</topic><topic>Sensors</topic><topic>Spatial-temporal correlation</topic><topic>Spatiotemporal data</topic><topic>Tensors</topic><topic>Traffic information</topic><topic>Traffic sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaobo</creatorcontrib><creatorcontrib>Wang, Kaiyuan</creatorcontrib><creatorcontrib>Li, Zuoyong</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Ye, Qiaolin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xiaobo</au><au>Wang, Kaiyuan</au><au>Li, Zuoyong</au><au>Zhang, Yu</au><au>Ye, Qiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Complete traffic sensor data is considered to be one of the critical ingredients for intelligent transportation systems (ITS). However, the traffic measurements prevalently suffer from the inevitable and ubiquitous missing values. Current missing data completion algorithms are difficult to leverage the global low-rank property and the fine-grained spatial-temporal structure simultaneously. To circumvent this problem, this work presents a novel collaborative nonconvex low-rank spatial-temporal data tensor completion model that can take full advantage of the inherent spatial-temporal characteristics of traffic measurement data. First, the tensor Schatten p-norm, as an effective nonconvex surrogate of rank function, is used to exploit the global multi-dimensional correlation of traffic data. Then, we present an elastic net self-representation method and utilize an autoregression model in order to simultaneously capture the self-similarity and the temporal continuity of traffic data acquired in the same sensor network. By integrating the above elements in a unified nonconvex learning model, our method can explore the inherent structure of traffic data from the viewpoints of both global multi-dimensional correlation and fine-grained spatial and temporal dependency. Then, in the view of the general framework of the alternating directions method of multipliers (ADMM), an efficient iterative algorithm is designed to solve our model. Besides, to optimize the parameter combination of the model, a Bayesian optimization-based parameter selection algorithm is developed, which avoids manual parameter adjustment. Extensive experiments and analyses on two real-world traffic datasets are carried out. The results demonstrate the advantages of our model under diverse missing patterns and missing ratios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3284929</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4087-6544</orcidid><orcidid>https://orcid.org/0000-0003-0952-9915</orcidid><orcidid>https://orcid.org/0000-0001-9940-1637</orcidid><orcidid>https://orcid.org/0000-0001-9201-8977</orcidid><orcidid>https://orcid.org/0000-0002-8793-8610</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_proquest_journals_2830415239
source IEEE Electronic Library (IEL)
subjects Alternating directions method of multipliers
Data acquisition
Data recovery
Intelligent transportation systems
Iterative algorithms
Iterative methods
Low-rank tensor completion
Mathematical models
Missing data
Optimization
Parameters
Self-similarity
Sensors
Spatial-temporal correlation
Spatiotemporal data
Tensors
Traffic information
Traffic sensor networks
title A Novel Nonconvex Low-rank Tensor Completion Approach for Traffic Sensor Data Recovery from Incomplete Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Nonconvex%20Low-rank%20Tensor%20Completion%20Approach%20for%20Traffic%20Sensor%20Data%20Recovery%20from%20Incomplete%20Measurements&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Chen,%20Xiaobo&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3284929&rft_dat=%3Cproquest_RIE%3E2830415239%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830415239&rft_id=info:pmid/&rft_ieee_id=10147850&rfr_iscdi=true