Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity

The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fortschritte der Physik 2023-07, Vol.71 (6-7), p.n/a
Hauptverfasser: De, Uday Chand, De, Krishnendu, Zengin, Fusun Ozen, Demirbag, Sezgin Altay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6-7
container_start_page
container_title Fortschritte der Physik
container_volume 71
creator De, Uday Chand
De, Krishnendu
Zengin, Fusun Ozen
Demirbag, Sezgin Altay
description The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal {F}(\mathcal {R})$‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal {F}(\mathcal {R})$‐gravity model. The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity model.
doi_str_mv 10.1002/prop.202200201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2830329076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830329076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1621-49d719c970a7cf4fd9ef76cc2a17c100fa814fc2aef21bca4a8725b326e05e8f3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wN20S6mJpmfzCxlsFUotLa6E8JtmtApbWdMMi1VCj6Cz-iTmKFil64uh_udw70HoWuCuwRjelvqouxSTKkTmJygBoko8YOUJaeogTGJ_ITi5BxdGLPAjiEpaaBtNgcNwkqdv4PNi7XxCuWBNylBSJuvZC2fKjD59-dX5tYW1tabSFGzsPSySm_AVlp6sJ55vfa403pdgZ0Lt_vo7dtHMd53Wi6jr2GT290lOlOwNPLqdzbRS-_-OXvwB8P-Y3Y38AWJ3fVhOmMkFSnDwIQK1SyVisVCUCBMuK8VJCRUTkpFyVRACAmj0TSgscSRTFTQRDeHXNfOWyWN5Yui0u5yw2kS4ICmmMWO6h4ooQtjtFS81PkK9I4TzOtyeV0u_yvXGdKDYZsv5e4fmo_Gw9HR-wPWwYEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830329076</pqid></control><display><type>article</type><title>Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>De, Uday Chand ; De, Krishnendu ; Zengin, Fusun Ozen ; Demirbag, Sezgin Altay</creator><creatorcontrib>De, Uday Chand ; De, Krishnendu ; Zengin, Fusun Ozen ; Demirbag, Sezgin Altay</creatorcontrib><description>The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal {F}(\mathcal {R})$‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal {F}(\mathcal {R})$‐gravity model. The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity model.</description><identifier>ISSN: 0015-8208</identifier><identifier>EISSN: 1521-3978</identifier><identifier>DOI: 10.1002/prop.202200201</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Curvature ; Perfect fluids; f(R)$f(\mathcal {R})$‐gravity ; Relativity ; Spacetime of quasi‐constant sectional curvature</subject><ispartof>Fortschritte der Physik, 2023-07, Vol.71 (6-7), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1621-49d719c970a7cf4fd9ef76cc2a17c100fa814fc2aef21bca4a8725b326e05e8f3</citedby><cites>FETCH-LOGICAL-c1621-49d719c970a7cf4fd9ef76cc2a17c100fa814fc2aef21bca4a8725b326e05e8f3</cites><orcidid>0000-0002-6643-6267 ; 0000-0001-6520-4520 ; 0000-0002-8990-4609 ; 0000-0002-5468-5100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprop.202200201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprop.202200201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>De, Uday Chand</creatorcontrib><creatorcontrib>De, Krishnendu</creatorcontrib><creatorcontrib>Zengin, Fusun Ozen</creatorcontrib><creatorcontrib>Demirbag, Sezgin Altay</creatorcontrib><title>Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity</title><title>Fortschritte der Physik</title><description>The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal {F}(\mathcal {R})$‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal {F}(\mathcal {R})$‐gravity model. The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity model.</description><subject>Curvature</subject><subject>Perfect fluids; f(R)$f(\mathcal {R})$‐gravity</subject><subject>Relativity</subject><subject>Spacetime of quasi‐constant sectional curvature</subject><issn>0015-8208</issn><issn>1521-3978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wN20S6mJpmfzCxlsFUotLa6E8JtmtApbWdMMi1VCj6Cz-iTmKFil64uh_udw70HoWuCuwRjelvqouxSTKkTmJygBoko8YOUJaeogTGJ_ITi5BxdGLPAjiEpaaBtNgcNwkqdv4PNi7XxCuWBNylBSJuvZC2fKjD59-dX5tYW1tabSFGzsPSySm_AVlp6sJ55vfa403pdgZ0Lt_vo7dtHMd53Wi6jr2GT290lOlOwNPLqdzbRS-_-OXvwB8P-Y3Y38AWJ3fVhOmMkFSnDwIQK1SyVisVCUCBMuK8VJCRUTkpFyVRACAmj0TSgscSRTFTQRDeHXNfOWyWN5Yui0u5yw2kS4ICmmMWO6h4ooQtjtFS81PkK9I4TzOtyeV0u_yvXGdKDYZsv5e4fmo_Gw9HR-wPWwYEg</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>De, Uday Chand</creator><creator>De, Krishnendu</creator><creator>Zengin, Fusun Ozen</creator><creator>Demirbag, Sezgin Altay</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6643-6267</orcidid><orcidid>https://orcid.org/0000-0001-6520-4520</orcidid><orcidid>https://orcid.org/0000-0002-8990-4609</orcidid><orcidid>https://orcid.org/0000-0002-5468-5100</orcidid></search><sort><creationdate>202307</creationdate><title>Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity</title><author>De, Uday Chand ; De, Krishnendu ; Zengin, Fusun Ozen ; Demirbag, Sezgin Altay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1621-49d719c970a7cf4fd9ef76cc2a17c100fa814fc2aef21bca4a8725b326e05e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Curvature</topic><topic>Perfect fluids; f(R)$f(\mathcal {R})$‐gravity</topic><topic>Relativity</topic><topic>Spacetime of quasi‐constant sectional curvature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Uday Chand</creatorcontrib><creatorcontrib>De, Krishnendu</creatorcontrib><creatorcontrib>Zengin, Fusun Ozen</creatorcontrib><creatorcontrib>Demirbag, Sezgin Altay</creatorcontrib><collection>CrossRef</collection><jtitle>Fortschritte der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Uday Chand</au><au>De, Krishnendu</au><au>Zengin, Fusun Ozen</au><au>Demirbag, Sezgin Altay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity</atitle><jtitle>Fortschritte der Physik</jtitle><date>2023-07</date><risdate>2023</risdate><volume>71</volume><issue>6-7</issue><epage>n/a</epage><issn>0015-8208</issn><eissn>1521-3978</eissn><abstract>The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal {F}(\mathcal {R})$‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal {F}(\mathcal {R})$‐gravity model. The main aim of this article is to investigate a spacetime of quasi‐constant sectional curvature. At first, the existence of such a spacetime is established by several examples. We have shown that a spacetime of quasi‐constant sectional curvature agrees with the present state of the universe and it represents a Robertson Walker spacetime. Moreover, if the spacetime is Ricci semi‐symmetric or Ricci symmetric, then either the spacetime represents a spacetime of constant sectional curvature, or the spacetime represents phantom era. Also, we prove that a Ricci symmetric spacetime of quasi‐constant sectional curvature represents a static spacetime and the spacetime under consideration is of Petrov type I, D or O. Finally, we concentrate on a quasi‐constant sectional curvature spacetime solution in F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity. As a result, various energy conditions are studied and analyzed our obtained outcomes in terms of a F(R)$\mathcal{F}(\mathcal{R})\ $‐gravity model.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prop.202200201</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6643-6267</orcidid><orcidid>https://orcid.org/0000-0001-6520-4520</orcidid><orcidid>https://orcid.org/0000-0002-8990-4609</orcidid><orcidid>https://orcid.org/0000-0002-5468-5100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-8208
ispartof Fortschritte der Physik, 2023-07, Vol.71 (6-7), p.n/a
issn 0015-8208
1521-3978
language eng
recordid cdi_proquest_journals_2830329076
source Wiley Online Library Journals Frontfile Complete
subjects Curvature
Perfect fluids
f(R)$f(\mathcal {R})$‐gravity
Relativity
Spacetime of quasi‐constant sectional curvature
title Characterizations of a Spacetime of Quasi‐Constant Sectional Curvature and F(R)$\mathcal {F}(\mathcal {R})$‐Gravity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizations%20of%20a%20Spacetime%20of%20Quasi%E2%80%90Constant%20Sectional%20Curvature%20and%20F(R)$%5Cmathcal%20%7BF%7D(%5Cmathcal%20%7BR%7D)$%E2%80%90Gravity&rft.jtitle=Fortschritte%20der%20Physik&rft.au=De,%20Uday%20Chand&rft.date=2023-07&rft.volume=71&rft.issue=6-7&rft.epage=n/a&rft.issn=0015-8208&rft.eissn=1521-3978&rft_id=info:doi/10.1002/prop.202200201&rft_dat=%3Cproquest_cross%3E2830329076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830329076&rft_id=info:pmid/&rfr_iscdi=true