Swarm intelligence based object tracking
Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow an...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-07, Vol.82 (18), p.28009-28039 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28039 |
---|---|
container_issue | 18 |
container_start_page | 28009 |
container_title | Multimedia tools and applications |
container_volume | 82 |
creator | Misra, Rajesh Ray, Kumar S. |
description | Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results. |
doi_str_mv | 10.1007/s11042-023-14343-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829986313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829986313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gisbAY7nx2nIyo4ktCYgBmy3acKqVNip0K9d9jCBIb093wPu-dHsbOEa4QQF8nRJCCgyCOkiTx_QGbodLEtRZ4mHeqgGsFeMxOUloBYKmEnLHLl08bN0XXj2G97pah96FwNoWmGNwq-LEYo_XvXb88ZUetXadw9jvn7O3u9nXxwJ-e7x8XN0_cCw0jD16VpdVOVKBk2WoryTpVETSopZfKg3aqqa3HsvGtovxr5UChsE6Tbmuas4updxuHj11Io1kNu9jnk0ZUoq6rkpBySkwpH4eUYmjNNnYbG_cGwXwbMZMRk42YHyNmnyGaoJTD_TLEv-p_qC8sNWJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829986313</pqid></control><display><type>article</type><title>Swarm intelligence based object tracking</title><source>SpringerLink Journals - AutoHoldings</source><creator>Misra, Rajesh ; Ray, Kumar S.</creator><creatorcontrib>Misra, Rajesh ; Ray, Kumar S.</creatorcontrib><description>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-14343-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Cameras ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Methods ; Multimedia ; Multimedia Information Systems ; Neural networks ; Occlusion ; Optical flow (image analysis) ; Optimization ; Pedestrians ; Special Purpose and Application-Based Systems ; Swarm intelligence ; Tracking</subject><ispartof>Multimedia tools and applications, 2023-07, Vol.82 (18), p.28009-28039</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</cites><orcidid>0000-0003-2217-3730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-14343-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-14343-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Misra, Rajesh</creatorcontrib><creatorcontrib>Ray, Kumar S.</creatorcontrib><title>Swarm intelligence based object tracking</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cameras</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Pedestrians</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Swarm intelligence</subject><subject>Tracking</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gisbAY7nx2nIyo4ktCYgBmy3acKqVNip0K9d9jCBIb093wPu-dHsbOEa4QQF8nRJCCgyCOkiTx_QGbodLEtRZ4mHeqgGsFeMxOUloBYKmEnLHLl08bN0XXj2G97pah96FwNoWmGNwq-LEYo_XvXb88ZUetXadw9jvn7O3u9nXxwJ-e7x8XN0_cCw0jD16VpdVOVKBk2WoryTpVETSopZfKg3aqqa3HsvGtovxr5UChsE6Tbmuas4updxuHj11Io1kNu9jnk0ZUoq6rkpBySkwpH4eUYmjNNnYbG_cGwXwbMZMRk42YHyNmnyGaoJTD_TLEv-p_qC8sNWJM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Misra, Rajesh</creator><creator>Ray, Kumar S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2217-3730</orcidid></search><sort><creationdate>20230701</creationdate><title>Swarm intelligence based object tracking</title><author>Misra, Rajesh ; Ray, Kumar S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cameras</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Pedestrians</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Swarm intelligence</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misra, Rajesh</creatorcontrib><creatorcontrib>Ray, Kumar S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misra, Rajesh</au><au>Ray, Kumar S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm intelligence based object tracking</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>82</volume><issue>18</issue><spage>28009</spage><epage>28039</epage><pages>28009-28039</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-14343-y</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2217-3730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2023-07, Vol.82 (18), p.28009-28039 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2829986313 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Approximation Cameras Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Methods Multimedia Multimedia Information Systems Neural networks Occlusion Optical flow (image analysis) Optimization Pedestrians Special Purpose and Application-Based Systems Swarm intelligence Tracking |
title | Swarm intelligence based object tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20intelligence%20based%20object%20tracking&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Misra,%20Rajesh&rft.date=2023-07-01&rft.volume=82&rft.issue=18&rft.spage=28009&rft.epage=28039&rft.pages=28009-28039&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-14343-y&rft_dat=%3Cproquest_cross%3E2829986313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829986313&rft_id=info:pmid/&rfr_iscdi=true |