Swarm intelligence based object tracking

Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-07, Vol.82 (18), p.28009-28039
Hauptverfasser: Misra, Rajesh, Ray, Kumar S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28039
container_issue 18
container_start_page 28009
container_title Multimedia tools and applications
container_volume 82
creator Misra, Rajesh
Ray, Kumar S.
description Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.
doi_str_mv 10.1007/s11042-023-14343-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829986313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829986313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gisbAY7nx2nIyo4ktCYgBmy3acKqVNip0K9d9jCBIb093wPu-dHsbOEa4QQF8nRJCCgyCOkiTx_QGbodLEtRZ4mHeqgGsFeMxOUloBYKmEnLHLl08bN0XXj2G97pah96FwNoWmGNwq-LEYo_XvXb88ZUetXadw9jvn7O3u9nXxwJ-e7x8XN0_cCw0jD16VpdVOVKBk2WoryTpVETSopZfKg3aqqa3HsvGtovxr5UChsE6Tbmuas4updxuHj11Io1kNu9jnk0ZUoq6rkpBySkwpH4eUYmjNNnYbG_cGwXwbMZMRk42YHyNmnyGaoJTD_TLEv-p_qC8sNWJM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829986313</pqid></control><display><type>article</type><title>Swarm intelligence based object tracking</title><source>SpringerLink Journals - AutoHoldings</source><creator>Misra, Rajesh ; Ray, Kumar S.</creator><creatorcontrib>Misra, Rajesh ; Ray, Kumar S.</creatorcontrib><description>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-14343-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Approximation ; Cameras ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Methods ; Multimedia ; Multimedia Information Systems ; Neural networks ; Occlusion ; Optical flow (image analysis) ; Optimization ; Pedestrians ; Special Purpose and Application-Based Systems ; Swarm intelligence ; Tracking</subject><ispartof>Multimedia tools and applications, 2023-07, Vol.82 (18), p.28009-28039</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</cites><orcidid>0000-0003-2217-3730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-14343-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-14343-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Misra, Rajesh</creatorcontrib><creatorcontrib>Ray, Kumar S.</creatorcontrib><title>Swarm intelligence based object tracking</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Cameras</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Occlusion</subject><subject>Optical flow (image analysis)</subject><subject>Optimization</subject><subject>Pedestrians</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Swarm intelligence</subject><subject>Tracking</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gisbAY7nx2nIyo4ktCYgBmy3acKqVNip0K9d9jCBIb093wPu-dHsbOEa4QQF8nRJCCgyCOkiTx_QGbodLEtRZ4mHeqgGsFeMxOUloBYKmEnLHLl08bN0XXj2G97pah96FwNoWmGNwq-LEYo_XvXb88ZUetXadw9jvn7O3u9nXxwJ-e7x8XN0_cCw0jD16VpdVOVKBk2WoryTpVETSopZfKg3aqqa3HsvGtovxr5UChsE6Tbmuas4updxuHj11Io1kNu9jnk0ZUoq6rkpBySkwpH4eUYmjNNnYbG_cGwXwbMZMRk42YHyNmnyGaoJTD_TLEv-p_qC8sNWJM</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Misra, Rajesh</creator><creator>Ray, Kumar S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2217-3730</orcidid></search><sort><creationdate>20230701</creationdate><title>Swarm intelligence based object tracking</title><author>Misra, Rajesh ; Ray, Kumar S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ec566a7b280546f7a43ab5830d174c45c07b5d9ac16dcf533438b0512ab737f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Cameras</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Occlusion</topic><topic>Optical flow (image analysis)</topic><topic>Optimization</topic><topic>Pedestrians</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Swarm intelligence</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misra, Rajesh</creatorcontrib><creatorcontrib>Ray, Kumar S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misra, Rajesh</au><au>Ray, Kumar S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm intelligence based object tracking</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>82</volume><issue>18</issue><spage>28009</spage><epage>28039</epage><pages>28009-28039</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Though object tracking is a very old problem still there are several challenges to be solved; for instance, variation of illumination of light, noise, occlusion, sudden start and stop of moving object, shading etc. In this paper we propose a dual approach for object tracking based on optical flow and swarm Intelligence. The optical flow based KLT tracker, tracks the dominant points of the target object from first frame to last frame of a video sequence; whereas swarm Intelligence based PSO tracker simultaneously tracks the boundary information of the target object from second frame to last frame of the same video sequence. The boundary information of the target object is captured by the polygonal approximation of the same. The dual approach to object tracking is inherently robust with respect to the above stated problems. We compare the performance of the proposed dual tracking algorithm with several benchmark datasets and in most of the cases we obtain superior results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-14343-y</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2217-3730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2023-07, Vol.82 (18), p.28009-28039
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2829986313
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Approximation
Cameras
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Methods
Multimedia
Multimedia Information Systems
Neural networks
Occlusion
Optical flow (image analysis)
Optimization
Pedestrians
Special Purpose and Application-Based Systems
Swarm intelligence
Tracking
title Swarm intelligence based object tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A32%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20intelligence%20based%20object%20tracking&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Misra,%20Rajesh&rft.date=2023-07-01&rft.volume=82&rft.issue=18&rft.spage=28009&rft.epage=28039&rft.pages=28009-28039&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-14343-y&rft_dat=%3Cproquest_cross%3E2829986313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829986313&rft_id=info:pmid/&rfr_iscdi=true