Quantifying the Value of Learning for Flexible Water Infrastructure Planning

Uncertainty in future climate change challenges water infrastructure development decisions. Flexible infrastructure development, in which infrastructure is proactively designed to be changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while maintaining reliable wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2023-06, Vol.59 (6), p.n/a
Hauptverfasser: Skerker, J. B., Zaniolo, M., Willebrand, K., Lickley, M., Fletcher, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Water resources research
container_volume 59
creator Skerker, J. B.
Zaniolo, M.
Willebrand, K.
Lickley, M.
Fletcher, S. M.
description Uncertainty in future climate change challenges water infrastructure development decisions. Flexible infrastructure development, in which infrastructure is proactively designed to be changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while maintaining reliable water supply. Flexible strategies assume that water planners will learn over time, updating future climate projections and using that new information to change plans. Previous work has developed methods to incorporate learning using climate observations into flexible planning but has not quantified the impact of different amounts of learning on the effectiveness of flexible planning. In this work, we develop a framework to assess how differences in the amount of learning about climate uncertainty affect the value of flexible water infrastructure planning. In the first part of our framework, we design climate scenarios with different amounts of learning using an exploratory Bayesian modeling approach. Then, we quantify the impacts of learning on flexibility using simulated costs and infrastructure decisions. We demonstrate this framework on a stylized case study of the Mwache Dam near Mombasa, Kenya. Flexible planning is more effective in avoiding over‐ or underbuilding under high‐learning scenarios, especially in avoiding overbuilding in wet climates. This framework provides insight on the climate conditions and learning scenarios that make flexible infrastructure most valuable. Key Points We present a framework to assess how the rate of learning about climate uncertainty affects the value of flexible water infrastructure Exploratory Bayesian modeling generates climate learning scenarios with high and low potential to reduce future precipitation uncertainty In a case study in Mombasa, Kenya, flexible water infrastructure is valuable in high‐learning scenarios and wet precipitation conditions
doi_str_mv 10.1029/2022WR034412
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829816442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829816442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3306-b8b84d3692d8bc8735b9f1e023d76e8407aa8bd66f1e43ab8517304e79aaff23</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwavR_ep-HKVYLQTUUOxxmW12NSUmdTdB--9NqAdPzmXg5WEGXoQuKbmhhJlbRhhbF4QLQdkRmlAjRKaM4sdoQojgGeVGnaKzlLaEUDGTaoLylx6argr7qnnD3bvHr1D3HrcB5x5iM6ahjXhR--_K1R6vofMRL5sQIXWx33R99Pi5hmak5-gkQJ38xe-eotXifjV_zPKnh-X8Ls-AcyIzp50WJZeGldpttOIzZwL1hPFSSa8FUQDalVIOoeDg9IwqToRXBiAExqfo6nB2F9vP3qfObts-NsNHyzQzmkohRnV9UJvYphR9sLtYfUDcW0rsWJf9W9fA-YF_VbXf_2vtupgXTA7DfwDw2Gtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829816442</pqid></control><display><type>article</type><title>Quantifying the Value of Learning for Flexible Water Infrastructure Planning</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Skerker, J. B. ; Zaniolo, M. ; Willebrand, K. ; Lickley, M. ; Fletcher, S. M.</creator><creatorcontrib>Skerker, J. B. ; Zaniolo, M. ; Willebrand, K. ; Lickley, M. ; Fletcher, S. M.</creatorcontrib><description>Uncertainty in future climate change challenges water infrastructure development decisions. Flexible infrastructure development, in which infrastructure is proactively designed to be changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while maintaining reliable water supply. Flexible strategies assume that water planners will learn over time, updating future climate projections and using that new information to change plans. Previous work has developed methods to incorporate learning using climate observations into flexible planning but has not quantified the impact of different amounts of learning on the effectiveness of flexible planning. In this work, we develop a framework to assess how differences in the amount of learning about climate uncertainty affect the value of flexible water infrastructure planning. In the first part of our framework, we design climate scenarios with different amounts of learning using an exploratory Bayesian modeling approach. Then, we quantify the impacts of learning on flexibility using simulated costs and infrastructure decisions. We demonstrate this framework on a stylized case study of the Mwache Dam near Mombasa, Kenya. Flexible planning is more effective in avoiding over‐ or underbuilding under high‐learning scenarios, especially in avoiding overbuilding in wet climates. This framework provides insight on the climate conditions and learning scenarios that make flexible infrastructure most valuable. Key Points We present a framework to assess how the rate of learning about climate uncertainty affects the value of flexible water infrastructure Exploratory Bayesian modeling generates climate learning scenarios with high and low potential to reduce future precipitation uncertainty In a case study in Mombasa, Kenya, flexible water infrastructure is valuable in high‐learning scenarios and wet precipitation conditions</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2022WR034412</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Bayesian analysis ; Bayesian learning ; Climate change ; Climatic conditions ; Decisions ; deep uncertainty ; flexible design ; Frameworks ; Future climates ; Infrastructure ; infrastructure planning ; Machine learning ; Observational learning ; Planning ; Probability theory ; Risk reduction ; Uncertainty ; Water engineering ; Water supply ; Water supply systems ; Wet climates</subject><ispartof>Water resources research, 2023-06, Vol.59 (6), p.n/a</ispartof><rights>2023. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3306-b8b84d3692d8bc8735b9f1e023d76e8407aa8bd66f1e43ab8517304e79aaff23</citedby><cites>FETCH-LOGICAL-a3306-b8b84d3692d8bc8735b9f1e023d76e8407aa8bd66f1e43ab8517304e79aaff23</cites><orcidid>0000-0003-3289-2237 ; 0000-0001-7022-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022WR034412$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022WR034412$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,11513,27923,27924,45573,45574,46467,46891</link.rule.ids></links><search><creatorcontrib>Skerker, J. B.</creatorcontrib><creatorcontrib>Zaniolo, M.</creatorcontrib><creatorcontrib>Willebrand, K.</creatorcontrib><creatorcontrib>Lickley, M.</creatorcontrib><creatorcontrib>Fletcher, S. M.</creatorcontrib><title>Quantifying the Value of Learning for Flexible Water Infrastructure Planning</title><title>Water resources research</title><description>Uncertainty in future climate change challenges water infrastructure development decisions. Flexible infrastructure development, in which infrastructure is proactively designed to be changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while maintaining reliable water supply. Flexible strategies assume that water planners will learn over time, updating future climate projections and using that new information to change plans. Previous work has developed methods to incorporate learning using climate observations into flexible planning but has not quantified the impact of different amounts of learning on the effectiveness of flexible planning. In this work, we develop a framework to assess how differences in the amount of learning about climate uncertainty affect the value of flexible water infrastructure planning. In the first part of our framework, we design climate scenarios with different amounts of learning using an exploratory Bayesian modeling approach. Then, we quantify the impacts of learning on flexibility using simulated costs and infrastructure decisions. We demonstrate this framework on a stylized case study of the Mwache Dam near Mombasa, Kenya. Flexible planning is more effective in avoiding over‐ or underbuilding under high‐learning scenarios, especially in avoiding overbuilding in wet climates. This framework provides insight on the climate conditions and learning scenarios that make flexible infrastructure most valuable. Key Points We present a framework to assess how the rate of learning about climate uncertainty affects the value of flexible water infrastructure Exploratory Bayesian modeling generates climate learning scenarios with high and low potential to reduce future precipitation uncertainty In a case study in Mombasa, Kenya, flexible water infrastructure is valuable in high‐learning scenarios and wet precipitation conditions</description><subject>Bayesian analysis</subject><subject>Bayesian learning</subject><subject>Climate change</subject><subject>Climatic conditions</subject><subject>Decisions</subject><subject>deep uncertainty</subject><subject>flexible design</subject><subject>Frameworks</subject><subject>Future climates</subject><subject>Infrastructure</subject><subject>infrastructure planning</subject><subject>Machine learning</subject><subject>Observational learning</subject><subject>Planning</subject><subject>Probability theory</subject><subject>Risk reduction</subject><subject>Uncertainty</subject><subject>Water engineering</subject><subject>Water supply</subject><subject>Water supply systems</subject><subject>Wet climates</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwavR_ep-HKVYLQTUUOxxmW12NSUmdTdB--9NqAdPzmXg5WEGXoQuKbmhhJlbRhhbF4QLQdkRmlAjRKaM4sdoQojgGeVGnaKzlLaEUDGTaoLylx6argr7qnnD3bvHr1D3HrcB5x5iM6ahjXhR--_K1R6vofMRL5sQIXWx33R99Pi5hmak5-gkQJ38xe-eotXifjV_zPKnh-X8Ls-AcyIzp50WJZeGldpttOIzZwL1hPFSSa8FUQDalVIOoeDg9IwqToRXBiAExqfo6nB2F9vP3qfObts-NsNHyzQzmkohRnV9UJvYphR9sLtYfUDcW0rsWJf9W9fA-YF_VbXf_2vtupgXTA7DfwDw2Gtg</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Skerker, J. B.</creator><creator>Zaniolo, M.</creator><creator>Willebrand, K.</creator><creator>Lickley, M.</creator><creator>Fletcher, S. M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3289-2237</orcidid><orcidid>https://orcid.org/0000-0001-7022-6337</orcidid></search><sort><creationdate>202306</creationdate><title>Quantifying the Value of Learning for Flexible Water Infrastructure Planning</title><author>Skerker, J. B. ; Zaniolo, M. ; Willebrand, K. ; Lickley, M. ; Fletcher, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3306-b8b84d3692d8bc8735b9f1e023d76e8407aa8bd66f1e43ab8517304e79aaff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian analysis</topic><topic>Bayesian learning</topic><topic>Climate change</topic><topic>Climatic conditions</topic><topic>Decisions</topic><topic>deep uncertainty</topic><topic>flexible design</topic><topic>Frameworks</topic><topic>Future climates</topic><topic>Infrastructure</topic><topic>infrastructure planning</topic><topic>Machine learning</topic><topic>Observational learning</topic><topic>Planning</topic><topic>Probability theory</topic><topic>Risk reduction</topic><topic>Uncertainty</topic><topic>Water engineering</topic><topic>Water supply</topic><topic>Water supply systems</topic><topic>Wet climates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skerker, J. B.</creatorcontrib><creatorcontrib>Zaniolo, M.</creatorcontrib><creatorcontrib>Willebrand, K.</creatorcontrib><creatorcontrib>Lickley, M.</creatorcontrib><creatorcontrib>Fletcher, S. M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skerker, J. B.</au><au>Zaniolo, M.</au><au>Willebrand, K.</au><au>Lickley, M.</au><au>Fletcher, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Value of Learning for Flexible Water Infrastructure Planning</atitle><jtitle>Water resources research</jtitle><date>2023-06</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Uncertainty in future climate change challenges water infrastructure development decisions. Flexible infrastructure development, in which infrastructure is proactively designed to be changed in the future, can reduce the risk of overbuilding unnecessary infrastructure while maintaining reliable water supply. Flexible strategies assume that water planners will learn over time, updating future climate projections and using that new information to change plans. Previous work has developed methods to incorporate learning using climate observations into flexible planning but has not quantified the impact of different amounts of learning on the effectiveness of flexible planning. In this work, we develop a framework to assess how differences in the amount of learning about climate uncertainty affect the value of flexible water infrastructure planning. In the first part of our framework, we design climate scenarios with different amounts of learning using an exploratory Bayesian modeling approach. Then, we quantify the impacts of learning on flexibility using simulated costs and infrastructure decisions. We demonstrate this framework on a stylized case study of the Mwache Dam near Mombasa, Kenya. Flexible planning is more effective in avoiding over‐ or underbuilding under high‐learning scenarios, especially in avoiding overbuilding in wet climates. This framework provides insight on the climate conditions and learning scenarios that make flexible infrastructure most valuable. Key Points We present a framework to assess how the rate of learning about climate uncertainty affects the value of flexible water infrastructure Exploratory Bayesian modeling generates climate learning scenarios with high and low potential to reduce future precipitation uncertainty In a case study in Mombasa, Kenya, flexible water infrastructure is valuable in high‐learning scenarios and wet precipitation conditions</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022WR034412</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-3289-2237</orcidid><orcidid>https://orcid.org/0000-0001-7022-6337</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2023-06, Vol.59 (6), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_journals_2829816442
source Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Bayesian analysis
Bayesian learning
Climate change
Climatic conditions
Decisions
deep uncertainty
flexible design
Frameworks
Future climates
Infrastructure
infrastructure planning
Machine learning
Observational learning
Planning
Probability theory
Risk reduction
Uncertainty
Water engineering
Water supply
Water supply systems
Wet climates
title Quantifying the Value of Learning for Flexible Water Infrastructure Planning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Value%20of%20Learning%20for%20Flexible%20Water%20Infrastructure%20Planning&rft.jtitle=Water%20resources%20research&rft.au=Skerker,%20J.%20B.&rft.date=2023-06&rft.volume=59&rft.issue=6&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2022WR034412&rft_dat=%3Cproquest_cross%3E2829816442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829816442&rft_id=info:pmid/&rfr_iscdi=true