On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models

We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-03, Vol.44 (3), p.1111-1118
Hauptverfasser: Baranchuk, V. A., Pyatkov, S. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1118
container_issue 3
container_start_page 1111
container_title Lobachevskii journal of mathematics
container_volume 44
creator Baranchuk, V. A.
Pyatkov, S. G.
description We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.
doi_str_mv 10.1134/S1995080223030071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829812551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829812551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM2qbpUdavhZUVV8FbSdOpdOk2NekK_nunVPAgnmYm87wzk5excxCXAHFytYE8T4UWUsYiFiKDAzYDDTrKcyUPKad2NPaP2UkIW0GgUmrG3tYd37gd8mX3iT4gf_KubHEXuKv5M1pHr033TszeWwy8IXwwQ-M647_4wpHKjlV009T1PlDGH12FbThlR7VpA579xDl7vbt9WTxEq_X9cnG9iqxUeohqoytdQYZlkogYAEqZaG3BVALKqlTCVkqkCWZ5ZpSxdLPVcSLQIGbWgozn7GKa23v3sccwFFs6taOVhdQy1yDTFIiCibLeheCxLnrf7OgLBYhiNLD4YyBp5KQJ_WgB-t_J_4u-AfBNcjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829812551</pqid></control><display><type>article</type><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><source>SpringerNature Journals</source><creator>Baranchuk, V. A. ; Pyatkov, S. G.</creator><creatorcontrib>Baranchuk, V. A. ; Pyatkov, S. G.</creatorcontrib><description>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223030071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Convection ; Geometry ; Inverse problems ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Series (mathematics) ; Sobolev space</subject><ispartof>Lobachevskii journal of mathematics, 2023-03, Vol.44 (3), p.1111-1118</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223030071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223030071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baranchuk, V. A.</creatorcontrib><creatorcontrib>Pyatkov, S. G.</creatorcontrib><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convection</subject><subject>Geometry</subject><subject>Inverse problems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Series (mathematics)</subject><subject>Sobolev space</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM2qbpUdavhZUVV8FbSdOpdOk2NekK_nunVPAgnmYm87wzk5excxCXAHFytYE8T4UWUsYiFiKDAzYDDTrKcyUPKad2NPaP2UkIW0GgUmrG3tYd37gd8mX3iT4gf_KubHEXuKv5M1pHr033TszeWwy8IXwwQ-M647_4wpHKjlV009T1PlDGH12FbThlR7VpA579xDl7vbt9WTxEq_X9cnG9iqxUeohqoytdQYZlkogYAEqZaG3BVALKqlTCVkqkCWZ5ZpSxdLPVcSLQIGbWgozn7GKa23v3sccwFFs6taOVhdQy1yDTFIiCibLeheCxLnrf7OgLBYhiNLD4YyBp5KQJ_WgB-t_J_4u-AfBNcjY</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Baranchuk, V. A.</creator><creator>Pyatkov, S. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><author>Baranchuk, V. A. ; Pyatkov, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convection</topic><topic>Geometry</topic><topic>Inverse problems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Series (mathematics)</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranchuk, V. A.</creatorcontrib><creatorcontrib>Pyatkov, S. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranchuk, V. A.</au><au>Pyatkov, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1111</spage><epage>1118</epage><pages>1111-1118</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223030071</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2023-03, Vol.44 (3), p.1111-1118
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_2829812551
source SpringerNature Journals
subjects Algebra
Analysis
Convection
Geometry
Inverse problems
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Series (mathematics)
Sobolev space
title On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Inverse%20Problems%20of%20Recovering%20Sources%20in%20Stationary%20Convection-Diffusion%20Models&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Baranchuk,%20V.%20A.&rft.date=2023-03-01&rft.volume=44&rft.issue=3&rft.spage=1111&rft.epage=1118&rft.pages=1111-1118&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223030071&rft_dat=%3Cproquest_cross%3E2829812551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829812551&rft_id=info:pmid/&rfr_iscdi=true