On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models
We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collec...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2023-03, Vol.44 (3), p.1111-1118 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1118 |
---|---|
container_issue | 3 |
container_start_page | 1111 |
container_title | Lobachevskii journal of mathematics |
container_volume | 44 |
creator | Baranchuk, V. A. Pyatkov, S. G. |
description | We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem. |
doi_str_mv | 10.1134/S1995080223030071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829812551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829812551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM2qbpUdavhZUVV8FbSdOpdOk2NekK_nunVPAgnmYm87wzk5excxCXAHFytYE8T4UWUsYiFiKDAzYDDTrKcyUPKad2NPaP2UkIW0GgUmrG3tYd37gd8mX3iT4gf_KubHEXuKv5M1pHr033TszeWwy8IXwwQ-M647_4wpHKjlV009T1PlDGH12FbThlR7VpA579xDl7vbt9WTxEq_X9cnG9iqxUeohqoytdQYZlkogYAEqZaG3BVALKqlTCVkqkCWZ5ZpSxdLPVcSLQIGbWgozn7GKa23v3sccwFFs6taOVhdQy1yDTFIiCibLeheCxLnrf7OgLBYhiNLD4YyBp5KQJ_WgB-t_J_4u-AfBNcjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829812551</pqid></control><display><type>article</type><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><source>SpringerNature Journals</source><creator>Baranchuk, V. A. ; Pyatkov, S. G.</creator><creatorcontrib>Baranchuk, V. A. ; Pyatkov, S. G.</creatorcontrib><description>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080223030071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Convection ; Geometry ; Inverse problems ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Series (mathematics) ; Sobolev space</subject><ispartof>Lobachevskii journal of mathematics, 2023-03, Vol.44 (3), p.1111-1118</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080223030071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080223030071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baranchuk, V. A.</creatorcontrib><creatorcontrib>Pyatkov, S. G.</creatorcontrib><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Convection</subject><subject>Geometry</subject><subject>Inverse problems</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Series (mathematics)</subject><subject>Sobolev space</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM2qbpUdavhZUVV8FbSdOpdOk2NekK_nunVPAgnmYm87wzk5excxCXAHFytYE8T4UWUsYiFiKDAzYDDTrKcyUPKad2NPaP2UkIW0GgUmrG3tYd37gd8mX3iT4gf_KubHEXuKv5M1pHr033TszeWwy8IXwwQ-M647_4wpHKjlV009T1PlDGH12FbThlR7VpA579xDl7vbt9WTxEq_X9cnG9iqxUeohqoytdQYZlkogYAEqZaG3BVALKqlTCVkqkCWZ5ZpSxdLPVcSLQIGbWgozn7GKa23v3sccwFFs6taOVhdQy1yDTFIiCibLeheCxLnrf7OgLBYhiNLD4YyBp5KQJ_WgB-t_J_4u-AfBNcjY</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Baranchuk, V. A.</creator><creator>Pyatkov, S. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</title><author>Baranchuk, V. A. ; Pyatkov, S. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-fa8d8d17eb4403111b2488c1ad01bdb60cd6054e797a6ac666c8340eaee7cc123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Convection</topic><topic>Geometry</topic><topic>Inverse problems</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Series (mathematics)</topic><topic>Sobolev space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baranchuk, V. A.</creatorcontrib><creatorcontrib>Pyatkov, S. G.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baranchuk, V. A.</au><au>Pyatkov, S. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>44</volume><issue>3</issue><spage>1111</spage><epage>1118</epage><pages>1111-1118</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering the source functions in stationary convection-diffusion models represented in a form of a finite segment of a series in some basis. The overdetermination conditions are the values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes and the Fredholm property of the problem.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080223030071</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2023-03, Vol.44 (3), p.1111-1118 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_2829812551 |
source | SpringerNature Journals |
subjects | Algebra Analysis Convection Geometry Inverse problems Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Series (mathematics) Sobolev space |
title | On Some Inverse Problems of Recovering Sources in Stationary Convection-Diffusion Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Some%20Inverse%20Problems%20of%20Recovering%20Sources%20in%20Stationary%20Convection-Diffusion%20Models&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Baranchuk,%20V.%20A.&rft.date=2023-03-01&rft.volume=44&rft.issue=3&rft.spage=1111&rft.epage=1118&rft.pages=1111-1118&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080223030071&rft_dat=%3Cproquest_cross%3E2829812551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829812551&rft_id=info:pmid/&rfr_iscdi=true |