Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment

Designing highly efficient and stable electrode‐electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e− oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hyd...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (27), p.n/a
Hauptverfasser: Fang, Yushuang, Fan, Yu, Xie, Kunchi, Ge, Wangxin, Zhu, Yihua, Qi, Zhiwen, Song, Zhen, Jiang, Hongliang, Li, Chunzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Fang, Yushuang
Fan, Yu
Xie, Kunchi
Ge, Wangxin
Zhu, Yihua
Qi, Zhiwen
Song, Zhen
Jiang, Hongliang
Li, Chunzhong
description Designing highly efficient and stable electrode‐electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e− oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen‐bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode‐electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e− ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen‐bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond. The addition of a hydrogen‐bond acceptor DMSO (dimethyl sulfoxide) into the KOH electrolyte improves the selectivity and activity of H2O2 electrosynthesis. The hydrogen bonds formed between DMSO and water molecules can reduce the activity of water dissociation to active H* species. The suitable H* supply environment improves the selectivity of H2O2 via suppressing 4 e− oxygen reduction.
doi_str_mv 10.1002/ange.202304413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829807457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829807457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1173-37f64924586fbb98bb8c72371316e00f29be5f278fb95f7ba062752b5e50f8fb3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMkdiTrGdOI7HtiptpfIzwGzZiV1cpXaxUyAbj8Az8iS4FJWR6UpH57v3ngPAJYIDBCG-FnapBhjiDOY5yo5ADxGM0owSegx6MIppiXN2Cs5CWEEIC0xZD-iRc6E1dpnMutq7pbLJg_Lu3dQqmTSqar0LnW2fVTAheTUiuXX1thE_RFSTuW2V16Iyojls-Pr4HDlbJxP7aryza2Xbc3CiRRPUxe_sg6ebyeN4li7up_PxcJFWCNEsPquLnOGclIWWkpVSlhXFGUUZKhSEGjOpiMa01JIRTaXYpSBYEkWgjmLWB1f7vRvvXrYqtHzltt7GkxyXmJWQ5oRG12DvqmK64JXmG2_WwnccQb7rku-65IcuI8D2wJtpVPePmw_vppM_9hsooXpu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829807457</pqid></control><display><type>article</type><title>Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fang, Yushuang ; Fan, Yu ; Xie, Kunchi ; Ge, Wangxin ; Zhu, Yihua ; Qi, Zhiwen ; Song, Zhen ; Jiang, Hongliang ; Li, Chunzhong</creator><creatorcontrib>Fang, Yushuang ; Fan, Yu ; Xie, Kunchi ; Ge, Wangxin ; Zhu, Yihua ; Qi, Zhiwen ; Song, Zhen ; Jiang, Hongliang ; Li, Chunzhong</creatorcontrib><description>Designing highly efficient and stable electrode‐electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e− oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen‐bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode‐electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e− ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen‐bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond. The addition of a hydrogen‐bond acceptor DMSO (dimethyl sulfoxide) into the KOH electrolyte improves the selectivity and activity of H2O2 electrosynthesis. The hydrogen bonds formed between DMSO and water molecules can reduce the activity of water dissociation to active H* species. The suitable H* supply environment improves the selectivity of H2O2 via suppressing 4 e− oxygen reduction.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202304413</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Chemical bonds ; Chemical reduction ; Chemistry ; Dimethyl sulfoxide ; Electrochemical analysis ; Electrochemistry ; Electrode-Electrolyte Interface ; Electrodes ; Electrolyte ; Electrolytes ; H2O2 Electrosynthesis ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrogen peroxide ; Hydrogen-Bond Network ; Hydrogenation ; Organic chemistry ; Oxygen Reduction Reaction ; Oxygen reduction reactions ; Selectivity ; Water chemistry</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (27), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1173-37f64924586fbb98bb8c72371316e00f29be5f278fb95f7ba062752b5e50f8fb3</cites><orcidid>0000-0001-7897-5850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202304413$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202304413$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Fang, Yushuang</creatorcontrib><creatorcontrib>Fan, Yu</creatorcontrib><creatorcontrib>Xie, Kunchi</creatorcontrib><creatorcontrib>Ge, Wangxin</creatorcontrib><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Qi, Zhiwen</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><creatorcontrib>Li, Chunzhong</creatorcontrib><title>Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment</title><title>Angewandte Chemie</title><description>Designing highly efficient and stable electrode‐electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e− oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen‐bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode‐electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e− ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen‐bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond. The addition of a hydrogen‐bond acceptor DMSO (dimethyl sulfoxide) into the KOH electrolyte improves the selectivity and activity of H2O2 electrosynthesis. The hydrogen bonds formed between DMSO and water molecules can reduce the activity of water dissociation to active H* species. The suitable H* supply environment improves the selectivity of H2O2 via suppressing 4 e− oxygen reduction.</description><subject>Catalysts</subject><subject>Chemical bonds</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Dimethyl sulfoxide</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode-Electrolyte Interface</subject><subject>Electrodes</subject><subject>Electrolyte</subject><subject>Electrolytes</subject><subject>H2O2 Electrosynthesis</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen-Bond Network</subject><subject>Hydrogenation</subject><subject>Organic chemistry</subject><subject>Oxygen Reduction Reaction</subject><subject>Oxygen reduction reactions</subject><subject>Selectivity</subject><subject>Water chemistry</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMkdiTrGdOI7HtiptpfIzwGzZiV1cpXaxUyAbj8Az8iS4FJWR6UpH57v3ngPAJYIDBCG-FnapBhjiDOY5yo5ADxGM0owSegx6MIppiXN2Cs5CWEEIC0xZD-iRc6E1dpnMutq7pbLJg_Lu3dQqmTSqar0LnW2fVTAheTUiuXX1thE_RFSTuW2V16Iyojls-Pr4HDlbJxP7aryza2Xbc3CiRRPUxe_sg6ebyeN4li7up_PxcJFWCNEsPquLnOGclIWWkpVSlhXFGUUZKhSEGjOpiMa01JIRTaXYpSBYEkWgjmLWB1f7vRvvXrYqtHzltt7GkxyXmJWQ5oRG12DvqmK64JXmG2_WwnccQb7rku-65IcuI8D2wJtpVPePmw_vppM_9hsooXpu</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Fang, Yushuang</creator><creator>Fan, Yu</creator><creator>Xie, Kunchi</creator><creator>Ge, Wangxin</creator><creator>Zhu, Yihua</creator><creator>Qi, Zhiwen</creator><creator>Song, Zhen</creator><creator>Jiang, Hongliang</creator><creator>Li, Chunzhong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7897-5850</orcidid></search><sort><creationdate>20230703</creationdate><title>Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment</title><author>Fang, Yushuang ; Fan, Yu ; Xie, Kunchi ; Ge, Wangxin ; Zhu, Yihua ; Qi, Zhiwen ; Song, Zhen ; Jiang, Hongliang ; Li, Chunzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1173-37f64924586fbb98bb8c72371316e00f29be5f278fb95f7ba062752b5e50f8fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysts</topic><topic>Chemical bonds</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Dimethyl sulfoxide</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode-Electrolyte Interface</topic><topic>Electrodes</topic><topic>Electrolyte</topic><topic>Electrolytes</topic><topic>H2O2 Electrosynthesis</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen-Bond Network</topic><topic>Hydrogenation</topic><topic>Organic chemistry</topic><topic>Oxygen Reduction Reaction</topic><topic>Oxygen reduction reactions</topic><topic>Selectivity</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yushuang</creatorcontrib><creatorcontrib>Fan, Yu</creatorcontrib><creatorcontrib>Xie, Kunchi</creatorcontrib><creatorcontrib>Ge, Wangxin</creatorcontrib><creatorcontrib>Zhu, Yihua</creatorcontrib><creatorcontrib>Qi, Zhiwen</creatorcontrib><creatorcontrib>Song, Zhen</creatorcontrib><creatorcontrib>Jiang, Hongliang</creatorcontrib><creatorcontrib>Li, Chunzhong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yushuang</au><au>Fan, Yu</au><au>Xie, Kunchi</au><au>Ge, Wangxin</au><au>Zhu, Yihua</au><au>Qi, Zhiwen</au><au>Song, Zhen</au><au>Jiang, Hongliang</au><au>Li, Chunzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>135</volume><issue>27</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Designing highly efficient and stable electrode‐electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e− oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen‐bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode‐electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e− ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen‐bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond. The addition of a hydrogen‐bond acceptor DMSO (dimethyl sulfoxide) into the KOH electrolyte improves the selectivity and activity of H2O2 electrosynthesis. The hydrogen bonds formed between DMSO and water molecules can reduce the activity of water dissociation to active H* species. The suitable H* supply environment improves the selectivity of H2O2 via suppressing 4 e− oxygen reduction.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202304413</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7897-5850</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-07, Vol.135 (27), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2829807457
source Wiley Online Library Journals Frontfile Complete
subjects Catalysts
Chemical bonds
Chemical reduction
Chemistry
Dimethyl sulfoxide
Electrochemical analysis
Electrochemistry
Electrode-Electrolyte Interface
Electrodes
Electrolyte
Electrolytes
H2O2 Electrosynthesis
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrogen peroxide
Hydrogen-Bond Network
Hydrogenation
Organic chemistry
Oxygen Reduction Reaction
Oxygen reduction reactions
Selectivity
Water chemistry
title Boosting Hydrogen Peroxide Electrosynthesis via Modulating the Interfacial Hydrogen‐Bond Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A04%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Hydrogen%20Peroxide%20Electrosynthesis%20via%20Modulating%20the%20Interfacial%20Hydrogen%E2%80%90Bond%20Environment&rft.jtitle=Angewandte%20Chemie&rft.au=Fang,%20Yushuang&rft.date=2023-07-03&rft.volume=135&rft.issue=27&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202304413&rft_dat=%3Cproquest_cross%3E2829807457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829807457&rft_id=info:pmid/&rfr_iscdi=true