Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries

Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-07, Vol.135 (27), p.n/a
Hauptverfasser: Yang, Ming, Wang, Yanyi, Ma, Dingtao, Zhu, Jianhui, Mi, Hongwei, Zhang, Zuotai, Wu, Buke, Zeng, Lin, Chen, Minfeng, Chen, Jizhang, Zhang, Peixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 27
container_start_page
container_title Angewandte Chemie
container_volume 135
creator Yang, Ming
Wang, Yanyi
Ma, Dingtao
Zhu, Jianhui
Mi, Hongwei
Zhang, Zuotai
Wu, Buke
Zeng, Lin
Chen, Minfeng
Chen, Jizhang
Zhang, Peixin
description Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries. The application of transition metal chalcogenides (TMDs) for zinc‐ion batteries is mainly limited by the sluggish storage kinetics. This report presents an integrated modulation to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host for all‐climate, high energy/power density and durable zinc‐ion batteries. An interfacial adsorption and intercalation pseudocapacitive storage mechanism was also uncovered.
doi_str_mv 10.1002/ange.202304400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829806231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829806231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1620-c271d39caf30c575052ebf8b0f96c59a14fe8fb92add7f7af2b02515d53fc2023</originalsourceid><addsrcrecordid>eNqFkc9uEzEQxi0EEqH0ytkSVzYde-Ps7jGk6R8pgkq0Fy4rr3e8dXHtYDutcusj9C36Xn2SehsER04jz3y_-eT5CPnEYMoA-JF0A0458BJmM4A3ZMIEZ0VZieotmUBuFjWfNe_JhxhvAGDOq2ZCnq6c9eqXcQNN10jPXcKgpTLS0kUffdgk493zw-PrQEkrxze9iLjtvZKbrEzmDumP5IMckK7NrUk0ebpysrPj1oW1GV9acysTfqFnZrjOQwzD7ujC32Ogx-iiSTsqXU-PtyFjSH--WmajrzJlX4PxI3mnpY14-KcekKuT1eXyrFh_Pz1fLtaFYnMOheIV68tGSV2CEpUAwbHTdQe6mSvRSDbTWOuu4bLvK11JzTvggolelFqNtzsgn_d7N8H_3mJM7Y3fBpctW17zps5nK1lWTfcqFXyMAXW7CfmDYdcyaMcw2jGM9m8YGWj2wL2xuPuPul18O139Y18Axl6T_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829806231</pqid></control><display><type>article</type><title>Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Ming ; Wang, Yanyi ; Ma, Dingtao ; Zhu, Jianhui ; Mi, Hongwei ; Zhang, Zuotai ; Wu, Buke ; Zeng, Lin ; Chen, Minfeng ; Chen, Jizhang ; Zhang, Peixin</creator><creatorcontrib>Yang, Ming ; Wang, Yanyi ; Ma, Dingtao ; Zhu, Jianhui ; Mi, Hongwei ; Zhang, Zuotai ; Wu, Buke ; Zeng, Lin ; Chen, Minfeng ; Chen, Jizhang ; Zhang, Peixin</creatorcontrib><description>Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries. The application of transition metal chalcogenides (TMDs) for zinc‐ion batteries is mainly limited by the sluggish storage kinetics. This report presents an integrated modulation to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host for all‐climate, high energy/power density and durable zinc‐ion batteries. An interfacial adsorption and intercalation pseudocapacitive storage mechanism was also uncovered.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202304400</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; All-Climate ; Aqueous electrolytes ; Chemistry ; Diffusion barriers ; Intercalation ; Interfacial Adsorption-Intercalation Pseudocapacitive Storage ; Ion diffusion ; Ion storage ; Kinetics ; Modulation ; Molten salt electrolytes ; Multiscale Interface Structure ; Omnidirectional Storage Kinetics ; Room temperature ; Selenium ; Solid electrolytes ; Specific capacity ; Storage ; Transition metal compounds ; Zinc ; Zn-Ion Batteries</subject><ispartof>Angewandte Chemie, 2023-07, Vol.135 (27), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1620-c271d39caf30c575052ebf8b0f96c59a14fe8fb92add7f7af2b02515d53fc2023</citedby><cites>FETCH-LOGICAL-c1620-c271d39caf30c575052ebf8b0f96c59a14fe8fb92add7f7af2b02515d53fc2023</cites><orcidid>0000-0003-2339-552X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202304400$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202304400$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wang, Yanyi</creatorcontrib><creatorcontrib>Ma, Dingtao</creatorcontrib><creatorcontrib>Zhu, Jianhui</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Zhang, Zuotai</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Chen, Minfeng</creatorcontrib><creatorcontrib>Chen, Jizhang</creatorcontrib><creatorcontrib>Zhang, Peixin</creatorcontrib><title>Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries</title><title>Angewandte Chemie</title><description>Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries. The application of transition metal chalcogenides (TMDs) for zinc‐ion batteries is mainly limited by the sluggish storage kinetics. This report presents an integrated modulation to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host for all‐climate, high energy/power density and durable zinc‐ion batteries. An interfacial adsorption and intercalation pseudocapacitive storage mechanism was also uncovered.</description><subject>Adsorption</subject><subject>All-Climate</subject><subject>Aqueous electrolytes</subject><subject>Chemistry</subject><subject>Diffusion barriers</subject><subject>Intercalation</subject><subject>Interfacial Adsorption-Intercalation Pseudocapacitive Storage</subject><subject>Ion diffusion</subject><subject>Ion storage</subject><subject>Kinetics</subject><subject>Modulation</subject><subject>Molten salt electrolytes</subject><subject>Multiscale Interface Structure</subject><subject>Omnidirectional Storage Kinetics</subject><subject>Room temperature</subject><subject>Selenium</subject><subject>Solid electrolytes</subject><subject>Specific capacity</subject><subject>Storage</subject><subject>Transition metal compounds</subject><subject>Zinc</subject><subject>Zn-Ion Batteries</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc9uEzEQxi0EEqH0ytkSVzYde-Ps7jGk6R8pgkq0Fy4rr3e8dXHtYDutcusj9C36Xn2SehsER04jz3y_-eT5CPnEYMoA-JF0A0458BJmM4A3ZMIEZ0VZieotmUBuFjWfNe_JhxhvAGDOq2ZCnq6c9eqXcQNN10jPXcKgpTLS0kUffdgk493zw-PrQEkrxze9iLjtvZKbrEzmDumP5IMckK7NrUk0ebpysrPj1oW1GV9acysTfqFnZrjOQwzD7ujC32Ogx-iiSTsqXU-PtyFjSH--WmajrzJlX4PxI3mnpY14-KcekKuT1eXyrFh_Pz1fLtaFYnMOheIV68tGSV2CEpUAwbHTdQe6mSvRSDbTWOuu4bLvK11JzTvggolelFqNtzsgn_d7N8H_3mJM7Y3fBpctW17zps5nK1lWTfcqFXyMAXW7CfmDYdcyaMcw2jGM9m8YGWj2wL2xuPuPul18O139Y18Axl6T_w</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Yang, Ming</creator><creator>Wang, Yanyi</creator><creator>Ma, Dingtao</creator><creator>Zhu, Jianhui</creator><creator>Mi, Hongwei</creator><creator>Zhang, Zuotai</creator><creator>Wu, Buke</creator><creator>Zeng, Lin</creator><creator>Chen, Minfeng</creator><creator>Chen, Jizhang</creator><creator>Zhang, Peixin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2339-552X</orcidid></search><sort><creationdate>20230703</creationdate><title>Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries</title><author>Yang, Ming ; Wang, Yanyi ; Ma, Dingtao ; Zhu, Jianhui ; Mi, Hongwei ; Zhang, Zuotai ; Wu, Buke ; Zeng, Lin ; Chen, Minfeng ; Chen, Jizhang ; Zhang, Peixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1620-c271d39caf30c575052ebf8b0f96c59a14fe8fb92add7f7af2b02515d53fc2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>All-Climate</topic><topic>Aqueous electrolytes</topic><topic>Chemistry</topic><topic>Diffusion barriers</topic><topic>Intercalation</topic><topic>Interfacial Adsorption-Intercalation Pseudocapacitive Storage</topic><topic>Ion diffusion</topic><topic>Ion storage</topic><topic>Kinetics</topic><topic>Modulation</topic><topic>Molten salt electrolytes</topic><topic>Multiscale Interface Structure</topic><topic>Omnidirectional Storage Kinetics</topic><topic>Room temperature</topic><topic>Selenium</topic><topic>Solid electrolytes</topic><topic>Specific capacity</topic><topic>Storage</topic><topic>Transition metal compounds</topic><topic>Zinc</topic><topic>Zn-Ion Batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Wang, Yanyi</creatorcontrib><creatorcontrib>Ma, Dingtao</creatorcontrib><creatorcontrib>Zhu, Jianhui</creatorcontrib><creatorcontrib>Mi, Hongwei</creatorcontrib><creatorcontrib>Zhang, Zuotai</creatorcontrib><creatorcontrib>Wu, Buke</creatorcontrib><creatorcontrib>Zeng, Lin</creatorcontrib><creatorcontrib>Chen, Minfeng</creatorcontrib><creatorcontrib>Chen, Jizhang</creatorcontrib><creatorcontrib>Zhang, Peixin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Ming</au><au>Wang, Yanyi</au><au>Ma, Dingtao</au><au>Zhu, Jianhui</au><au>Mi, Hongwei</au><au>Zhang, Zuotai</au><au>Wu, Buke</au><au>Zeng, Lin</au><au>Chen, Minfeng</au><au>Chen, Jizhang</au><au>Zhang, Peixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>135</volume><issue>27</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure‐integrated modulation concept was presented, to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host. Theory research indicated that the co‐modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption‐intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all‐climate high‐performance Zn‐ion batteries. The application of transition metal chalcogenides (TMDs) for zinc‐ion batteries is mainly limited by the sluggish storage kinetics. This report presents an integrated modulation to unlock the omnidirectional storage kinetics‐enhanced porous VSe2−x⋅n H2O host for all‐climate, high energy/power density and durable zinc‐ion batteries. An interfacial adsorption and intercalation pseudocapacitive storage mechanism was also uncovered.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202304400</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2339-552X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2023-07, Vol.135 (27), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2829806231
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
All-Climate
Aqueous electrolytes
Chemistry
Diffusion barriers
Intercalation
Interfacial Adsorption-Intercalation Pseudocapacitive Storage
Ion diffusion
Ion storage
Kinetics
Modulation
Molten salt electrolytes
Multiscale Interface Structure
Omnidirectional Storage Kinetics
Room temperature
Selenium
Solid electrolytes
Specific capacity
Storage
Transition metal compounds
Zinc
Zn-Ion Batteries
title Unlocking the Interfacial Adsorption‐Intercalation Pseudocapacitive Storage Limit to Enabling All‐Climate, High Energy/Power Density and Durable Zn‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20the%20Interfacial%20Adsorption%E2%80%90Intercalation%20Pseudocapacitive%20Storage%20Limit%20to%20Enabling%20All%E2%80%90Climate,%20High%20Energy/Power%20Density%20and%20Durable%20Zn%E2%80%90Ion%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Yang,%20Ming&rft.date=2023-07-03&rft.volume=135&rft.issue=27&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202304400&rft_dat=%3Cproquest_cross%3E2829806231%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829806231&rft_id=info:pmid/&rfr_iscdi=true