Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding
Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding performance, it requires tremend...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2023-06, Vol.12 (12), p.2685 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2685 |
container_title | Electronics (Basel) |
container_volume | 12 |
creator | Lee, Taesik Jun, Dongsan |
description | Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal mode decision during the encoding process. In particular, VVC adopted the bi-prediction with CU-level weight (BCW) as one of the new tools, which enhanced the coding efficiency of conventional bi-prediction by assigning different weights to the two prediction blocks in the process of inter prediction. In this study, we investigate the statistical characteristics of input features that exhibit a correlation with the BCW and define four useful types of categories to facilitate the inter prediction of VVC. With the investigated input features, a lightweight neural network with multilayer perceptron (MLP) architecture is designed to provide high accuracy and low complexity. We propose a fast BCW mode decision method with a lightweight MLP to reduce the computational complexity of the weighted multiple bi-prediction in the VVC encoder. The experimental results show that the proposed method significantly reduced the BCW encoding complexity by up to 33% with unnoticeable coding loss, compared to the VVC test model (VTM) under the random-access (RA) configuration. |
doi_str_mv | 10.3390/electronics12122685 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2829796393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757753077</galeid><sourcerecordid>A757753077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8f44e6398d04cf7c20e853dc1c83023a53c5b272aa5d99006e76bba4bdc0f5163</originalsourceid><addsrcrecordid>eNptUTtPwzAQjhBIVKW_gMUSc4ofSRyPpTylVnSgZYwc-9K6SuNgu0Kd-Ou4lIGBu-FO-h53p0uSa4LHjAl8Cy2o4GxnlCeUUFqU-VkyoJiLVFBBz__0l8nI-y2OIQgrGR4kX4_SBzS3GtA9KOON7dAcwsZqZBs037fB9C2gdzDrTQCN7ky6cKCNCpHp0dKbbo1mR_Dzh3KStPIADi3AKeiPqyHToRU4LyMEaGU0WDS1OmqvkotGth5Gv3WYLB8f3qbP6ez16WU6maWKFSSkZZNlUDBRapyphiuKocyZVkTFKyiTOVN5TTmVMtdCYFwAL-paZrVWuMlJwYbJzcm3d_ZjDz5UW7t3XRxZ0ZIKLqI5i6zxibWWLVSma2xwUsXUsDPKdtDE_asJzznPGeY8CthJoJz13kFT9c7spDtUBFfH71T_fId9A3gHhuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829796393</pqid></control><display><type>article</type><title>Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lee, Taesik ; Jun, Dongsan</creator><creatorcontrib>Lee, Taesik ; Jun, Dongsan</creatorcontrib><description>Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal mode decision during the encoding process. In particular, VVC adopted the bi-prediction with CU-level weight (BCW) as one of the new tools, which enhanced the coding efficiency of conventional bi-prediction by assigning different weights to the two prediction blocks in the process of inter prediction. In this study, we investigate the statistical characteristics of input features that exhibit a correlation with the BCW and define four useful types of categories to facilitate the inter prediction of VVC. With the investigated input features, a lightweight neural network with multilayer perceptron (MLP) architecture is designed to provide high accuracy and low complexity. We propose a fast BCW mode decision method with a lightweight MLP to reduce the computational complexity of the weighted multiple bi-prediction in the VVC encoder. The experimental results show that the proposed method significantly reduced the BCW encoding complexity by up to 33% with unnoticeable coding loss, compared to the VVC test model (VTM) under the random-access (RA) configuration.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12122685</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Coders ; Coding ; Complexity ; Digital video ; Efficiency ; Image coding ; Lightweight ; Multilayer perceptrons ; Neural networks ; Random access ; Video compression</subject><ispartof>Electronics (Basel), 2023-06, Vol.12 (12), p.2685</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8f44e6398d04cf7c20e853dc1c83023a53c5b272aa5d99006e76bba4bdc0f5163</citedby><cites>FETCH-LOGICAL-c361t-8f44e6398d04cf7c20e853dc1c83023a53c5b272aa5d99006e76bba4bdc0f5163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Taesik</creatorcontrib><creatorcontrib>Jun, Dongsan</creatorcontrib><title>Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding</title><title>Electronics (Basel)</title><description>Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal mode decision during the encoding process. In particular, VVC adopted the bi-prediction with CU-level weight (BCW) as one of the new tools, which enhanced the coding efficiency of conventional bi-prediction by assigning different weights to the two prediction blocks in the process of inter prediction. In this study, we investigate the statistical characteristics of input features that exhibit a correlation with the BCW and define four useful types of categories to facilitate the inter prediction of VVC. With the investigated input features, a lightweight neural network with multilayer perceptron (MLP) architecture is designed to provide high accuracy and low complexity. We propose a fast BCW mode decision method with a lightweight MLP to reduce the computational complexity of the weighted multiple bi-prediction in the VVC encoder. The experimental results show that the proposed method significantly reduced the BCW encoding complexity by up to 33% with unnoticeable coding loss, compared to the VVC test model (VTM) under the random-access (RA) configuration.</description><subject>Algorithms</subject><subject>Coders</subject><subject>Coding</subject><subject>Complexity</subject><subject>Digital video</subject><subject>Efficiency</subject><subject>Image coding</subject><subject>Lightweight</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Random access</subject><subject>Video compression</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUTtPwzAQjhBIVKW_gMUSc4ofSRyPpTylVnSgZYwc-9K6SuNgu0Kd-Ou4lIGBu-FO-h53p0uSa4LHjAl8Cy2o4GxnlCeUUFqU-VkyoJiLVFBBz__0l8nI-y2OIQgrGR4kX4_SBzS3GtA9KOON7dAcwsZqZBs037fB9C2gdzDrTQCN7ky6cKCNCpHp0dKbbo1mR_Dzh3KStPIADi3AKeiPqyHToRU4LyMEaGU0WDS1OmqvkotGth5Gv3WYLB8f3qbP6ez16WU6maWKFSSkZZNlUDBRapyphiuKocyZVkTFKyiTOVN5TTmVMtdCYFwAL-paZrVWuMlJwYbJzcm3d_ZjDz5UW7t3XRxZ0ZIKLqI5i6zxibWWLVSma2xwUsXUsDPKdtDE_asJzznPGeY8CthJoJz13kFT9c7spDtUBFfH71T_fId9A3gHhuk</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lee, Taesik</creator><creator>Jun, Dongsan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230601</creationdate><title>Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding</title><author>Lee, Taesik ; Jun, Dongsan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8f44e6398d04cf7c20e853dc1c83023a53c5b272aa5d99006e76bba4bdc0f5163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Coders</topic><topic>Coding</topic><topic>Complexity</topic><topic>Digital video</topic><topic>Efficiency</topic><topic>Image coding</topic><topic>Lightweight</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Random access</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Taesik</creatorcontrib><creatorcontrib>Jun, Dongsan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Taesik</au><au>Jun, Dongsan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>12</volume><issue>12</issue><spage>2685</spage><pages>2685-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Versatile Video Coding (VVC), the state-of-the-art video coding standard, was developed by the Joint Video Experts Team (JVET) of ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts Group (VCEG) in 2020. Although VVC can provide powerful coding performance, it requires tremendous computational complexity to determine the optimal mode decision during the encoding process. In particular, VVC adopted the bi-prediction with CU-level weight (BCW) as one of the new tools, which enhanced the coding efficiency of conventional bi-prediction by assigning different weights to the two prediction blocks in the process of inter prediction. In this study, we investigate the statistical characteristics of input features that exhibit a correlation with the BCW and define four useful types of categories to facilitate the inter prediction of VVC. With the investigated input features, a lightweight neural network with multilayer perceptron (MLP) architecture is designed to provide high accuracy and low complexity. We propose a fast BCW mode decision method with a lightweight MLP to reduce the computational complexity of the weighted multiple bi-prediction in the VVC encoder. The experimental results show that the proposed method significantly reduced the BCW encoding complexity by up to 33% with unnoticeable coding loss, compared to the VVC test model (VTM) under the random-access (RA) configuration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12122685</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2023-06, Vol.12 (12), p.2685 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2829796393 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Coders Coding Complexity Digital video Efficiency Image coding Lightweight Multilayer perceptrons Neural networks Random access Video compression |
title | Fast Mode Decision Method of Multiple Weighted Bi-Predictions Using Lightweight Multilayer Perceptron in Versatile Video Coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Mode%20Decision%20Method%20of%20Multiple%20Weighted%20Bi-Predictions%20Using%20Lightweight%20Multilayer%20Perceptron%20in%20Versatile%20Video%20Coding&rft.jtitle=Electronics%20(Basel)&rft.au=Lee,%20Taesik&rft.date=2023-06-01&rft.volume=12&rft.issue=12&rft.spage=2685&rft.pages=2685-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12122685&rft_dat=%3Cgale_proqu%3EA757753077%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829796393&rft_id=info:pmid/&rft_galeid=A757753077&rfr_iscdi=true |