Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes

Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542
Hauptverfasser: Kim, Donghyeon, Choi, Ahreum, Park, Changhyun, Kim, Min-Ho, Lee, Hyun-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13542
container_issue 25
container_start_page 13535
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Kim, Donghyeon
Choi, Ahreum
Park, Changhyun
Kim, Min-Ho
Lee, Hyun-Wook
description Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na + ions. As a result, CuHCFe-1.4H 2 O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H 2 O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na + ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na + -ion battery cathodes. The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.
doi_str_mv 10.1039/d3ta02417b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829692094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829692094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1X7ubHGv9KhS81POSzSZtynazTbJq_72plZrLZOZ9ZoZ5AbjG6B4jKh4aGiUiDJf1GRgRlKOsZKI4P_05vwSTEDYoPY5QIcQI7Obdpw7RrmS03QrGtYbetRo6A20XtU9StLKFXzIlcJskNbQ6JBEq1_epttbfUu1l54z2PlHQOA-Da-ywzazrYC1jat1DJePaNTpcgQsj26Anf3EMPl6el7O3bPH-Op9NF5kiHMeMCaRFXR4SzFjNCeVUs1LUuWbGIE5Yk4tClqrBtagpy3OuDcISGaqLJqd0DG6Pc3vvdkO6sdq4wXdpZUU4EYUgSLBE3R0p5V0IXpuq93Yr_b7CqDq4Wj3R5fTX1ccE3xxhH9SJ-3ed_gByFHVz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829692094</pqid></control><display><type>article</type><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><source>Royal Society Of Chemistry Journals</source><creator>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</creator><creatorcontrib>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</creatorcontrib><description>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na + ions. As a result, CuHCFe-1.4H 2 O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H 2 O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na + ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na + -ion battery cathodes. The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02417b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Batteries ; Cathodes ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrolytes ; Ion diffusion ; Nonaqueous electrolytes ; Pigments ; Sodium ; Sodium-ion batteries ; Specific capacity ; Water chemistry</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</citedby><cites>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</cites><orcidid>0000-0002-6691-6869 ; 0000-0001-9074-1619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Park, Changhyun</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na + ions. As a result, CuHCFe-1.4H 2 O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H 2 O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na + ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na + -ion battery cathodes. The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Ion diffusion</subject><subject>Nonaqueous electrolytes</subject><subject>Pigments</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Water chemistry</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1X7ubHGv9KhS81POSzSZtynazTbJq_72plZrLZOZ9ZoZ5AbjG6B4jKh4aGiUiDJf1GRgRlKOsZKI4P_05vwSTEDYoPY5QIcQI7Obdpw7RrmS03QrGtYbetRo6A20XtU9StLKFXzIlcJskNbQ6JBEq1_epttbfUu1l54z2PlHQOA-Da-ywzazrYC1jat1DJePaNTpcgQsj26Anf3EMPl6el7O3bPH-Op9NF5kiHMeMCaRFXR4SzFjNCeVUs1LUuWbGIE5Yk4tClqrBtagpy3OuDcISGaqLJqd0DG6Pc3vvdkO6sdq4wXdpZUU4EYUgSLBE3R0p5V0IXpuq93Yr_b7CqDq4Wj3R5fTX1ccE3xxhH9SJ-3ed_gByFHVz</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Kim, Donghyeon</creator><creator>Choi, Ahreum</creator><creator>Park, Changhyun</creator><creator>Kim, Min-Ho</creator><creator>Lee, Hyun-Wook</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6691-6869</orcidid><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid></search><sort><creationdate>20230627</creationdate><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><author>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Ion diffusion</topic><topic>Nonaqueous electrolytes</topic><topic>Pigments</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Park, Changhyun</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyeon</au><au>Choi, Ahreum</au><au>Park, Changhyun</au><au>Kim, Min-Ho</au><au>Lee, Hyun-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13535</spage><epage>13542</epage><pages>13535-13542</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na + ions. As a result, CuHCFe-1.4H 2 O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H 2 O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na + ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na + -ion battery cathodes. The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02417b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6691-6869</orcidid><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2829692094
source Royal Society Of Chemistry Journals
subjects Aqueous electrolytes
Batteries
Cathodes
Electrochemical analysis
Electrochemistry
Electrode materials
Electrolytes
Ion diffusion
Nonaqueous electrolytes
Pigments
Sodium
Sodium-ion batteries
Specific capacity
Water chemistry
title Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20role%20of%20interstitial%20water%20molecules%20in%20copper%20hexacyanoferrate%20for%20sodium-ion%20battery%20cathodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Donghyeon&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13535&rft.epage=13542&rft.pages=13535-13542&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02417b&rft_dat=%3Cproquest_cross%3E2829692094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829692094&rft_id=info:pmid/&rfr_iscdi=true