Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes
Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately invest...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13542 |
---|---|
container_issue | 25 |
container_start_page | 13535 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Kim, Donghyeon Choi, Ahreum Park, Changhyun Kim, Min-Ho Lee, Hyun-Wook |
description | Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na
+
ions. As a result, CuHCFe-1.4H
2
O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H
2
O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na
+
ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na
+
-ion battery cathodes.
The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system. |
doi_str_mv | 10.1039/d3ta02417b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829692094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829692094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1X7ubHGv9KhS81POSzSZtynazTbJq_72plZrLZOZ9ZoZ5AbjG6B4jKh4aGiUiDJf1GRgRlKOsZKI4P_05vwSTEDYoPY5QIcQI7Obdpw7RrmS03QrGtYbetRo6A20XtU9StLKFXzIlcJskNbQ6JBEq1_epttbfUu1l54z2PlHQOA-Da-ywzazrYC1jat1DJePaNTpcgQsj26Anf3EMPl6el7O3bPH-Op9NF5kiHMeMCaRFXR4SzFjNCeVUs1LUuWbGIE5Yk4tClqrBtagpy3OuDcISGaqLJqd0DG6Pc3vvdkO6sdq4wXdpZUU4EYUgSLBE3R0p5V0IXpuq93Yr_b7CqDq4Wj3R5fTX1ccE3xxhH9SJ-3ed_gByFHVz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829692094</pqid></control><display><type>article</type><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><source>Royal Society Of Chemistry Journals</source><creator>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</creator><creatorcontrib>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</creatorcontrib><description>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na
+
ions. As a result, CuHCFe-1.4H
2
O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H
2
O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na
+
ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na
+
-ion battery cathodes.
The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta02417b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Aqueous electrolytes ; Batteries ; Cathodes ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Electrolytes ; Ion diffusion ; Nonaqueous electrolytes ; Pigments ; Sodium ; Sodium-ion batteries ; Specific capacity ; Water chemistry</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</citedby><cites>FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</cites><orcidid>0000-0002-6691-6869 ; 0000-0001-9074-1619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Park, Changhyun</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na
+
ions. As a result, CuHCFe-1.4H
2
O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H
2
O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na
+
ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na
+
-ion battery cathodes.
The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</description><subject>Aqueous electrolytes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Ion diffusion</subject><subject>Nonaqueous electrolytes</subject><subject>Pigments</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Specific capacity</subject><subject>Water chemistry</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEQhoMoWGov3oWAN2E1X7ubHGv9KhS81POSzSZtynazTbJq_72plZrLZOZ9ZoZ5AbjG6B4jKh4aGiUiDJf1GRgRlKOsZKI4P_05vwSTEDYoPY5QIcQI7Obdpw7RrmS03QrGtYbetRo6A20XtU9StLKFXzIlcJskNbQ6JBEq1_epttbfUu1l54z2PlHQOA-Da-ywzazrYC1jat1DJePaNTpcgQsj26Anf3EMPl6el7O3bPH-Op9NF5kiHMeMCaRFXR4SzFjNCeVUs1LUuWbGIE5Yk4tClqrBtagpy3OuDcISGaqLJqd0DG6Pc3vvdkO6sdq4wXdpZUU4EYUgSLBE3R0p5V0IXpuq93Yr_b7CqDq4Wj3R5fTX1ccE3xxhH9SJ-3ed_gByFHVz</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Kim, Donghyeon</creator><creator>Choi, Ahreum</creator><creator>Park, Changhyun</creator><creator>Kim, Min-Ho</creator><creator>Lee, Hyun-Wook</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6691-6869</orcidid><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid></search><sort><creationdate>20230627</creationdate><title>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</title><author>Kim, Donghyeon ; Choi, Ahreum ; Park, Changhyun ; Kim, Min-Ho ; Lee, Hyun-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-490e9b7c281144b82383e479b5e4ff0824d596a7cd1b9b34558ef01a0f3e6d533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Ion diffusion</topic><topic>Nonaqueous electrolytes</topic><topic>Pigments</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Specific capacity</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Park, Changhyun</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyeon</au><au>Choi, Ahreum</au><au>Park, Changhyun</au><au>Kim, Min-Ho</au><au>Lee, Hyun-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-06-27</date><risdate>2023</risdate><volume>11</volume><issue>25</issue><spage>13535</spage><epage>13542</epage><pages>13535-13542</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Prussian blue analogues (PBAs) are one of the most promising cathode materials for sodium (Na)-ion batteries owing to their large channel size and stability in aqueous and organic electrolytes. However, the impact of interstitial water molecules within PBA channels has not yet been adequately investigated. Herein, by comparing the electrochemical performance of PBAs in aqueous and organic electrolytes, we demonstrate that water molecules depending on their number can inhibit the insertion of hydrated Na
+
ions. As a result, CuHCFe-1.4H
2
O with fewer interstitial water molecules possesses a higher specific capacity in an aqueous electrolyte compared to CuHCFe-1.8H
2
O, which has a higher number of interstitial water molecules. In addition, we found that interstitial water molecules can obstruct Na
+
ion diffusion, leading to poor kinetic properties. We believe that the newly found roles of interstitial water molecules could shed light on the design of high-performance PBAs for Na
+
-ion battery cathodes.
The electrochemical performance of prussian blue analogues (PBAs) can be determined by the number of interstitial water molecules in the channels, which inhibits the insertion and diffusion of sodium-ions in an aqueous electrolyte system.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta02417b</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6691-6869</orcidid><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-06, Vol.11 (25), p.13535-13542 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2829692094 |
source | Royal Society Of Chemistry Journals |
subjects | Aqueous electrolytes Batteries Cathodes Electrochemical analysis Electrochemistry Electrode materials Electrolytes Ion diffusion Nonaqueous electrolytes Pigments Sodium Sodium-ion batteries Specific capacity Water chemistry |
title | Investigating the role of interstitial water molecules in copper hexacyanoferrate for sodium-ion battery cathodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A55%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20role%20of%20interstitial%20water%20molecules%20in%20copper%20hexacyanoferrate%20for%20sodium-ion%20battery%20cathodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Donghyeon&rft.date=2023-06-27&rft.volume=11&rft.issue=25&rft.spage=13535&rft.epage=13542&rft.pages=13535-13542&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta02417b&rft_dat=%3Cproquest_cross%3E2829692094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829692094&rft_id=info:pmid/&rfr_iscdi=true |