Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors
The development of efficient multifunctional phosphors become hotspot in current commercial optoelectronic applications. Here we report, the green light-emitting SrMoO 4 :Tb 3+ (0.01 ≤ x ≤ 0.09) phosphors were prepared via solid-state route. The powder X-ray diffraction results revealed that the pre...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2023-06, Vol.34 (18), p.1412, Article 1412 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 1412 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Ranganatha, C. Lakshmi Palakshamurthy, B. S. Abhilash, G. P. Mathew, Anu Kumar, H. M. Suresh Shivakumara, C. |
description | The development of efficient multifunctional phosphors become hotspot in current commercial optoelectronic applications. Here we report, the green light-emitting SrMoO
4
:Tb
3+
(0.01 ≤ x ≤ 0.09) phosphors were prepared via solid-state route. The powder X-ray diffraction results revealed that the prepared phosphors were crystallised in a scheelite-type tetragonal phase with space group
I4
1
/a
and the structural parameters were examined by Rietveld refinement method. The scanning electron microscopy micrographs reveal that the particles exhibit irregular agglomerated morphology. UV–Visible diffused reflectance spectra reveals that, on substitution of Tb
3+
ion into Sr
2+
site, the direct band gap energy decreases with increasing Tb
3+
content from 4.15 to 3.72 eV. In the PL emission spectra of Tb
3+
-activated SrMoO
4
samples excited at 300 nm, the appeared characteristic emission peaks of Tb
3+
ions are arose due to the
5
D
4
→
7
F
J
(J = 3, 4, 5, 6) transitions. Further, the concentration quenching was observed at SrMoO
4
:Tb
3+
(Tb
3+
≥ 5 mol%) phosphors due to the exchange interaction between the neighbor Tb
3+
–Tb
3+
ions (Q ~ 3). The chromaticity coordinates of prepared phosphors lie in the green region of the Commission Internationale de I’ Eclairage 1931 chromaticity diagram. The calculated lifetime of the Sr
0.95
Tb
0.05
MoO
4
phosphor excited at 300 nm is 0.57 ms, which is considered to be a long lifetime. Hence, photoluminescence results reflect that the prepared phosphors are potential materials for solid-state lighting applications. Using optimized phosphor (Sr
0.95
Tb
0.05
MoO
4
) and polyvinyl alcohol (PVA) as a matrix, we developed a cost-effective, eco-friendly luminescent security ink in countering counterfeiting of precious documents, branded products, and currencies. In addition, we developed a flexible luminescent film for flat panel devices. |
doi_str_mv | 10.1007/s10854-023-10820-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829114659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829114659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-bdb6d0e85b7e34c298af5313fc4f60b8214d1a163e60ee9894a3d5ff1971f9b53</originalsourceid><addsrcrecordid>eNp9UMtqWzEQFSGFOG5_IKsLWaZKR6_7yK4kbVpw8CIOdCfuY-TIXEu3khyab8hPV44L3nUxzHA4j-EQcsHgmgFUXyKDWkkKXNB8caBwQmZMVYLKmv86JTNoVEWl4vyMnMe4AYBSinpG3u7wBUc_bdGlwpvCjPjHdiMW425rHcZ-jxs7buPnYnr2yR_xHosp-AlDshiL1g15kqW937mEwaBN1q2LdppG27fJehf3AY_hwS_lzaoTV8U6ILq9bcwT4kfywbRjxE__9pw8ff-2uv1BF8v7n7dfF7TnAIl2Q1cOgLXqKhSy503dGiWYML00JXQ1Z3JgLSsFloDY1I1sxaCMYU3FTNMpMSeXB9_8_u8dxqQ3fhdcjtS85g1jslRNZvEDqw8-xoBGT8Fu2_CqGeh96fpQus6l6_fSNWSROIhiJrs1hqP1f1R_AZN5iCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829114659</pqid></control><display><type>article</type><title>Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors</title><source>SpringerLink (Online service)</source><creator>Ranganatha, C. Lakshmi ; Palakshamurthy, B. S. ; Abhilash, G. P. ; Mathew, Anu ; Kumar, H. M. Suresh ; Shivakumara, C.</creator><creatorcontrib>Ranganatha, C. Lakshmi ; Palakshamurthy, B. S. ; Abhilash, G. P. ; Mathew, Anu ; Kumar, H. M. Suresh ; Shivakumara, C.</creatorcontrib><description>The development of efficient multifunctional phosphors become hotspot in current commercial optoelectronic applications. Here we report, the green light-emitting SrMoO
4
:Tb
3+
(0.01 ≤ x ≤ 0.09) phosphors were prepared via solid-state route. The powder X-ray diffraction results revealed that the prepared phosphors were crystallised in a scheelite-type tetragonal phase with space group
I4
1
/a
and the structural parameters were examined by Rietveld refinement method. The scanning electron microscopy micrographs reveal that the particles exhibit irregular agglomerated morphology. UV–Visible diffused reflectance spectra reveals that, on substitution of Tb
3+
ion into Sr
2+
site, the direct band gap energy decreases with increasing Tb
3+
content from 4.15 to 3.72 eV. In the PL emission spectra of Tb
3+
-activated SrMoO
4
samples excited at 300 nm, the appeared characteristic emission peaks of Tb
3+
ions are arose due to the
5
D
4
→
7
F
J
(J = 3, 4, 5, 6) transitions. Further, the concentration quenching was observed at SrMoO
4
:Tb
3+
(Tb
3+
≥ 5 mol%) phosphors due to the exchange interaction between the neighbor Tb
3+
–Tb
3+
ions (Q ~ 3). The chromaticity coordinates of prepared phosphors lie in the green region of the Commission Internationale de I’ Eclairage 1931 chromaticity diagram. The calculated lifetime of the Sr
0.95
Tb
0.05
MoO
4
phosphor excited at 300 nm is 0.57 ms, which is considered to be a long lifetime. Hence, photoluminescence results reflect that the prepared phosphors are potential materials for solid-state lighting applications. Using optimized phosphor (Sr
0.95
Tb
0.05
MoO
4
) and polyvinyl alcohol (PVA) as a matrix, we developed a cost-effective, eco-friendly luminescent security ink in countering counterfeiting of precious documents, branded products, and currencies. In addition, we developed a flexible luminescent film for flat panel devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-10820-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromaticity ; Counterfeiting ; Crystallization ; Currencies ; Emission spectra ; Energy gap ; Flat panels ; Materials Science ; Mathematical analysis ; Optical and Electronic Materials ; Optoelectronics ; Phosphors ; Photoluminescence ; Photomicrographs ; Polyvinyl alcohol ; Rietveld method ; Scheelite ; Solid state ; X ray powder diffraction</subject><ispartof>Journal of materials science. Materials in electronics, 2023-06, Vol.34 (18), p.1412, Article 1412</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-bdb6d0e85b7e34c298af5313fc4f60b8214d1a163e60ee9894a3d5ff1971f9b53</cites><orcidid>0000-0001-5655-019X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-023-10820-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-023-10820-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ranganatha, C. Lakshmi</creatorcontrib><creatorcontrib>Palakshamurthy, B. S.</creatorcontrib><creatorcontrib>Abhilash, G. P.</creatorcontrib><creatorcontrib>Mathew, Anu</creatorcontrib><creatorcontrib>Kumar, H. M. Suresh</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><title>Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>The development of efficient multifunctional phosphors become hotspot in current commercial optoelectronic applications. Here we report, the green light-emitting SrMoO
4
:Tb
3+
(0.01 ≤ x ≤ 0.09) phosphors were prepared via solid-state route. The powder X-ray diffraction results revealed that the prepared phosphors were crystallised in a scheelite-type tetragonal phase with space group
I4
1
/a
and the structural parameters were examined by Rietveld refinement method. The scanning electron microscopy micrographs reveal that the particles exhibit irregular agglomerated morphology. UV–Visible diffused reflectance spectra reveals that, on substitution of Tb
3+
ion into Sr
2+
site, the direct band gap energy decreases with increasing Tb
3+
content from 4.15 to 3.72 eV. In the PL emission spectra of Tb
3+
-activated SrMoO
4
samples excited at 300 nm, the appeared characteristic emission peaks of Tb
3+
ions are arose due to the
5
D
4
→
7
F
J
(J = 3, 4, 5, 6) transitions. Further, the concentration quenching was observed at SrMoO
4
:Tb
3+
(Tb
3+
≥ 5 mol%) phosphors due to the exchange interaction between the neighbor Tb
3+
–Tb
3+
ions (Q ~ 3). The chromaticity coordinates of prepared phosphors lie in the green region of the Commission Internationale de I’ Eclairage 1931 chromaticity diagram. The calculated lifetime of the Sr
0.95
Tb
0.05
MoO
4
phosphor excited at 300 nm is 0.57 ms, which is considered to be a long lifetime. Hence, photoluminescence results reflect that the prepared phosphors are potential materials for solid-state lighting applications. Using optimized phosphor (Sr
0.95
Tb
0.05
MoO
4
) and polyvinyl alcohol (PVA) as a matrix, we developed a cost-effective, eco-friendly luminescent security ink in countering counterfeiting of precious documents, branded products, and currencies. In addition, we developed a flexible luminescent film for flat panel devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromaticity</subject><subject>Counterfeiting</subject><subject>Crystallization</subject><subject>Currencies</subject><subject>Emission spectra</subject><subject>Energy gap</subject><subject>Flat panels</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronics</subject><subject>Phosphors</subject><subject>Photoluminescence</subject><subject>Photomicrographs</subject><subject>Polyvinyl alcohol</subject><subject>Rietveld method</subject><subject>Scheelite</subject><subject>Solid state</subject><subject>X ray powder diffraction</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtqWzEQFSGFOG5_IKsLWaZKR6_7yK4kbVpw8CIOdCfuY-TIXEu3khyab8hPV44L3nUxzHA4j-EQcsHgmgFUXyKDWkkKXNB8caBwQmZMVYLKmv86JTNoVEWl4vyMnMe4AYBSinpG3u7wBUc_bdGlwpvCjPjHdiMW425rHcZ-jxs7buPnYnr2yR_xHosp-AlDshiL1g15kqW937mEwaBN1q2LdppG27fJehf3AY_hwS_lzaoTV8U6ILq9bcwT4kfywbRjxE__9pw8ff-2uv1BF8v7n7dfF7TnAIl2Q1cOgLXqKhSy503dGiWYML00JXQ1Z3JgLSsFloDY1I1sxaCMYU3FTNMpMSeXB9_8_u8dxqQ3fhdcjtS85g1jslRNZvEDqw8-xoBGT8Fu2_CqGeh96fpQus6l6_fSNWSROIhiJrs1hqP1f1R_AZN5iCM</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Ranganatha, C. Lakshmi</creator><creator>Palakshamurthy, B. S.</creator><creator>Abhilash, G. P.</creator><creator>Mathew, Anu</creator><creator>Kumar, H. M. Suresh</creator><creator>Shivakumara, C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5655-019X</orcidid></search><sort><creationdate>20230601</creationdate><title>Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors</title><author>Ranganatha, C. Lakshmi ; Palakshamurthy, B. S. ; Abhilash, G. P. ; Mathew, Anu ; Kumar, H. M. Suresh ; Shivakumara, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-bdb6d0e85b7e34c298af5313fc4f60b8214d1a163e60ee9894a3d5ff1971f9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromaticity</topic><topic>Counterfeiting</topic><topic>Crystallization</topic><topic>Currencies</topic><topic>Emission spectra</topic><topic>Energy gap</topic><topic>Flat panels</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronics</topic><topic>Phosphors</topic><topic>Photoluminescence</topic><topic>Photomicrographs</topic><topic>Polyvinyl alcohol</topic><topic>Rietveld method</topic><topic>Scheelite</topic><topic>Solid state</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranganatha, C. Lakshmi</creatorcontrib><creatorcontrib>Palakshamurthy, B. S.</creatorcontrib><creatorcontrib>Abhilash, G. P.</creatorcontrib><creatorcontrib>Mathew, Anu</creatorcontrib><creatorcontrib>Kumar, H. M. Suresh</creatorcontrib><creatorcontrib>Shivakumara, C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranganatha, C. Lakshmi</au><au>Palakshamurthy, B. S.</au><au>Abhilash, G. P.</au><au>Mathew, Anu</au><au>Kumar, H. M. Suresh</au><au>Shivakumara, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>34</volume><issue>18</issue><spage>1412</spage><pages>1412-</pages><artnum>1412</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>The development of efficient multifunctional phosphors become hotspot in current commercial optoelectronic applications. Here we report, the green light-emitting SrMoO
4
:Tb
3+
(0.01 ≤ x ≤ 0.09) phosphors were prepared via solid-state route. The powder X-ray diffraction results revealed that the prepared phosphors were crystallised in a scheelite-type tetragonal phase with space group
I4
1
/a
and the structural parameters were examined by Rietveld refinement method. The scanning electron microscopy micrographs reveal that the particles exhibit irregular agglomerated morphology. UV–Visible diffused reflectance spectra reveals that, on substitution of Tb
3+
ion into Sr
2+
site, the direct band gap energy decreases with increasing Tb
3+
content from 4.15 to 3.72 eV. In the PL emission spectra of Tb
3+
-activated SrMoO
4
samples excited at 300 nm, the appeared characteristic emission peaks of Tb
3+
ions are arose due to the
5
D
4
→
7
F
J
(J = 3, 4, 5, 6) transitions. Further, the concentration quenching was observed at SrMoO
4
:Tb
3+
(Tb
3+
≥ 5 mol%) phosphors due to the exchange interaction between the neighbor Tb
3+
–Tb
3+
ions (Q ~ 3). The chromaticity coordinates of prepared phosphors lie in the green region of the Commission Internationale de I’ Eclairage 1931 chromaticity diagram. The calculated lifetime of the Sr
0.95
Tb
0.05
MoO
4
phosphor excited at 300 nm is 0.57 ms, which is considered to be a long lifetime. Hence, photoluminescence results reflect that the prepared phosphors are potential materials for solid-state lighting applications. Using optimized phosphor (Sr
0.95
Tb
0.05
MoO
4
) and polyvinyl alcohol (PVA) as a matrix, we developed a cost-effective, eco-friendly luminescent security ink in countering counterfeiting of precious documents, branded products, and currencies. In addition, we developed a flexible luminescent film for flat panel devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-10820-0</doi><orcidid>https://orcid.org/0000-0001-5655-019X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-06, Vol.34 (18), p.1412, Article 1412 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2829114659 |
source | SpringerLink (Online service) |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Chromaticity Counterfeiting Crystallization Currencies Emission spectra Energy gap Flat panels Materials Science Mathematical analysis Optical and Electronic Materials Optoelectronics Phosphors Photoluminescence Photomicrographs Polyvinyl alcohol Rietveld method Scheelite Solid state X ray powder diffraction |
title | Development of flexible luminescent films, photoluminescence properties and anti-counterfeiting applications of SrMoO4:Tb3+ green phosphors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20flexible%20luminescent%20films,%20photoluminescence%20properties%20and%20anti-counterfeiting%20applications%20of%20SrMoO4:Tb3+%20green%20phosphors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ranganatha,%20C.%20Lakshmi&rft.date=2023-06-01&rft.volume=34&rft.issue=18&rft.spage=1412&rft.pages=1412-&rft.artnum=1412&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-10820-0&rft_dat=%3Cproquest_cross%3E2829114659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829114659&rft_id=info:pmid/&rfr_iscdi=true |