Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices
This paper studies the synthesis of Zn 1-x Mn x O ( x = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal sha...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Physical Society 2023-06, Vol.82 (12), p.1196-1210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1210 |
---|---|
container_issue | 12 |
container_start_page | 1196 |
container_title | Journal of the Korean Physical Society |
container_volume | 82 |
creator | Sivakumar, S. Robinson, Yengkokpam |
description | This paper studies the synthesis of Zn
1-x
Mn
x
O (
x
= 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn
0.94
Mn
0.06
O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices. |
doi_str_mv | 10.1007/s40042-023-00802-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829089284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829089284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuAS6mmSdqkSxnGH1Bmoxs3IW1uagdNapIK8_bGqeDOVS7hfOdyP4TOS3JVEiKuIyeE04JQVhAiSZ4O0KJsRF3IivJDtCBM8IJLyY_RSYzbTDMm6gVq19ZCl7B2BhuIQ--wt_jJ0Uts_AgGv7oNdtr5mMLUpSlAxNYHPL755A30QRudBu_2AnAQ-h2OyQfdQ_Z9DR3EU3Rk9XuEs993iV5u18-r--Jxc_ewunksOsqbVDTUUmo7JsG2VU0NqaUhQjCwYBrDjBC8NrSUta0E7XRrjdBN1VbW5n-Zz1mii9k7Bv85QUxq66fg8kpFJW2IbGjGlojOVBd8jAGsGsPwocNOlUT9dKnmLlXuUu27VCSH2ByKGXY9hD_1P6lvjg93rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829089284</pqid></control><display><type>article</type><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sivakumar, S. ; Robinson, Yengkokpam</creator><creatorcontrib>Sivakumar, S. ; Robinson, Yengkokpam</creatorcontrib><description>This paper studies the synthesis of Zn
1-x
Mn
x
O (
x
= 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn
0.94
Mn
0.06
O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</description><identifier>ISSN: 0374-4884</identifier><identifier>EISSN: 1976-8524</identifier><identifier>DOI: 10.1007/s40042-023-00802-0</identifier><language>eng</language><publisher>Seoul: The Korean Physical Society</publisher><subject>Catalytic activity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Manganese ; Mathematical and Computational Physics ; Methylene blue ; Morphology ; Nanoparticles ; Optical properties ; Original Paper - Condensed Matter ; Oxidation ; Particle and Nuclear Physics ; Photocatalysis ; Photodegradation ; Physics ; Physics and Astronomy ; Solar radiation ; Structural analysis ; Theoretical ; Zinc oxide</subject><ispartof>Journal of the Korean Physical Society, 2023-06, Vol.82 (12), p.1196-1210</ispartof><rights>The Korean Physical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</citedby><cites>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</cites><orcidid>0000-0001-7212-713X ; 0000-0003-2222-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40042-023-00802-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40042-023-00802-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Robinson, Yengkokpam</creatorcontrib><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><title>Journal of the Korean Physical Society</title><addtitle>J. Korean Phys. Soc</addtitle><description>This paper studies the synthesis of Zn
1-x
Mn
x
O (
x
= 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn
0.94
Mn
0.06
O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</description><subject>Catalytic activity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Manganese</subject><subject>Mathematical and Computational Physics</subject><subject>Methylene blue</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Original Paper - Condensed Matter</subject><subject>Oxidation</subject><subject>Particle and Nuclear Physics</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar radiation</subject><subject>Structural analysis</subject><subject>Theoretical</subject><subject>Zinc oxide</subject><issn>0374-4884</issn><issn>1976-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuAS6mmSdqkSxnGH1Bmoxs3IW1uagdNapIK8_bGqeDOVS7hfOdyP4TOS3JVEiKuIyeE04JQVhAiSZ4O0KJsRF3IivJDtCBM8IJLyY_RSYzbTDMm6gVq19ZCl7B2BhuIQ--wt_jJ0Uts_AgGv7oNdtr5mMLUpSlAxNYHPL755A30QRudBu_2AnAQ-h2OyQfdQ_Z9DR3EU3Rk9XuEs993iV5u18-r--Jxc_ewunksOsqbVDTUUmo7JsG2VU0NqaUhQjCwYBrDjBC8NrSUta0E7XRrjdBN1VbW5n-Zz1mii9k7Bv85QUxq66fg8kpFJW2IbGjGlojOVBd8jAGsGsPwocNOlUT9dKnmLlXuUu27VCSH2ByKGXY9hD_1P6lvjg93rA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sivakumar, S.</creator><creator>Robinson, Yengkokpam</creator><general>The Korean Physical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7212-713X</orcidid><orcidid>https://orcid.org/0000-0003-2222-6046</orcidid></search><sort><creationdate>20230601</creationdate><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><author>Sivakumar, S. ; Robinson, Yengkokpam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalytic activity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Manganese</topic><topic>Mathematical and Computational Physics</topic><topic>Methylene blue</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Original Paper - Condensed Matter</topic><topic>Oxidation</topic><topic>Particle and Nuclear Physics</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar radiation</topic><topic>Structural analysis</topic><topic>Theoretical</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Robinson, Yengkokpam</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Korean Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, S.</au><au>Robinson, Yengkokpam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</atitle><jtitle>Journal of the Korean Physical Society</jtitle><stitle>J. Korean Phys. Soc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>82</volume><issue>12</issue><spage>1196</spage><epage>1210</epage><pages>1196-1210</pages><issn>0374-4884</issn><eissn>1976-8524</eissn><abstract>This paper studies the synthesis of Zn
1-x
Mn
x
O (
x
= 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn
0.94
Mn
0.06
O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</abstract><cop>Seoul</cop><pub>The Korean Physical Society</pub><doi>10.1007/s40042-023-00802-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7212-713X</orcidid><orcidid>https://orcid.org/0000-0003-2222-6046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0374-4884 |
ispartof | Journal of the Korean Physical Society, 2023-06, Vol.82 (12), p.1196-1210 |
issn | 0374-4884 1976-8524 |
language | eng |
recordid | cdi_proquest_journals_2829089284 |
source | SpringerLink Journals - AutoHoldings |
subjects | Catalytic activity Electrochemical analysis Electrode materials Electrodes Energy storage Manganese Mathematical and Computational Physics Methylene blue Morphology Nanoparticles Optical properties Original Paper - Condensed Matter Oxidation Particle and Nuclear Physics Photocatalysis Photodegradation Physics Physics and Astronomy Solar radiation Structural analysis Theoretical Zinc oxide |
title | Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20and%20design%20of%20Mn2+%20doped%20ZnO%20nanostructures%20for%20photodegradation%20and%20energy%20storage%20devices&rft.jtitle=Journal%20of%20the%20Korean%20Physical%20Society&rft.au=Sivakumar,%20S.&rft.date=2023-06-01&rft.volume=82&rft.issue=12&rft.spage=1196&rft.epage=1210&rft.pages=1196-1210&rft.issn=0374-4884&rft.eissn=1976-8524&rft_id=info:doi/10.1007/s40042-023-00802-0&rft_dat=%3Cproquest_cross%3E2829089284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829089284&rft_id=info:pmid/&rfr_iscdi=true |