Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices

This paper studies the synthesis of Zn 1-x Mn x O ( x  = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal sha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Physical Society 2023-06, Vol.82 (12), p.1196-1210
Hauptverfasser: Sivakumar, S., Robinson, Yengkokpam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1210
container_issue 12
container_start_page 1196
container_title Journal of the Korean Physical Society
container_volume 82
creator Sivakumar, S.
Robinson, Yengkokpam
description This paper studies the synthesis of Zn 1-x Mn x O ( x  = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn 0.94 Mn 0.06 O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.
doi_str_mv 10.1007/s40042-023-00802-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2829089284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829089284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</originalsourceid><addsrcrecordid>eNp9kM1KxDAURoMoOI6-gKuAS6mmSdqkSxnGH1Bmoxs3IW1uagdNapIK8_bGqeDOVS7hfOdyP4TOS3JVEiKuIyeE04JQVhAiSZ4O0KJsRF3IivJDtCBM8IJLyY_RSYzbTDMm6gVq19ZCl7B2BhuIQ--wt_jJ0Uts_AgGv7oNdtr5mMLUpSlAxNYHPL755A30QRudBu_2AnAQ-h2OyQfdQ_Z9DR3EU3Rk9XuEs993iV5u18-r--Jxc_ewunksOsqbVDTUUmo7JsG2VU0NqaUhQjCwYBrDjBC8NrSUta0E7XRrjdBN1VbW5n-Zz1mii9k7Bv85QUxq66fg8kpFJW2IbGjGlojOVBd8jAGsGsPwocNOlUT9dKnmLlXuUu27VCSH2ByKGXY9hD_1P6lvjg93rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829089284</pqid></control><display><type>article</type><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sivakumar, S. ; Robinson, Yengkokpam</creator><creatorcontrib>Sivakumar, S. ; Robinson, Yengkokpam</creatorcontrib><description>This paper studies the synthesis of Zn 1-x Mn x O ( x  = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn 0.94 Mn 0.06 O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</description><identifier>ISSN: 0374-4884</identifier><identifier>EISSN: 1976-8524</identifier><identifier>DOI: 10.1007/s40042-023-00802-0</identifier><language>eng</language><publisher>Seoul: The Korean Physical Society</publisher><subject>Catalytic activity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Manganese ; Mathematical and Computational Physics ; Methylene blue ; Morphology ; Nanoparticles ; Optical properties ; Original Paper - Condensed Matter ; Oxidation ; Particle and Nuclear Physics ; Photocatalysis ; Photodegradation ; Physics ; Physics and Astronomy ; Solar radiation ; Structural analysis ; Theoretical ; Zinc oxide</subject><ispartof>Journal of the Korean Physical Society, 2023-06, Vol.82 (12), p.1196-1210</ispartof><rights>The Korean Physical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</citedby><cites>FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</cites><orcidid>0000-0001-7212-713X ; 0000-0003-2222-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40042-023-00802-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40042-023-00802-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Robinson, Yengkokpam</creatorcontrib><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><title>Journal of the Korean Physical Society</title><addtitle>J. Korean Phys. Soc</addtitle><description>This paper studies the synthesis of Zn 1-x Mn x O ( x  = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn 0.94 Mn 0.06 O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</description><subject>Catalytic activity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Manganese</subject><subject>Mathematical and Computational Physics</subject><subject>Methylene blue</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Original Paper - Condensed Matter</subject><subject>Oxidation</subject><subject>Particle and Nuclear Physics</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar radiation</subject><subject>Structural analysis</subject><subject>Theoretical</subject><subject>Zinc oxide</subject><issn>0374-4884</issn><issn>1976-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAURoMoOI6-gKuAS6mmSdqkSxnGH1Bmoxs3IW1uagdNapIK8_bGqeDOVS7hfOdyP4TOS3JVEiKuIyeE04JQVhAiSZ4O0KJsRF3IivJDtCBM8IJLyY_RSYzbTDMm6gVq19ZCl7B2BhuIQ--wt_jJ0Uts_AgGv7oNdtr5mMLUpSlAxNYHPL755A30QRudBu_2AnAQ-h2OyQfdQ_Z9DR3EU3Rk9XuEs993iV5u18-r--Jxc_ewunksOsqbVDTUUmo7JsG2VU0NqaUhQjCwYBrDjBC8NrSUta0E7XRrjdBN1VbW5n-Zz1mii9k7Bv85QUxq66fg8kpFJW2IbGjGlojOVBd8jAGsGsPwocNOlUT9dKnmLlXuUu27VCSH2ByKGXY9hD_1P6lvjg93rA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Sivakumar, S.</creator><creator>Robinson, Yengkokpam</creator><general>The Korean Physical Society</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7212-713X</orcidid><orcidid>https://orcid.org/0000-0003-2222-6046</orcidid></search><sort><creationdate>20230601</creationdate><title>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</title><author>Sivakumar, S. ; Robinson, Yengkokpam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-92f22fc38efb562d068d0773efed9d3d7746d2186f572cabfd7a95b5ff46d8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalytic activity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Manganese</topic><topic>Mathematical and Computational Physics</topic><topic>Methylene blue</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Original Paper - Condensed Matter</topic><topic>Oxidation</topic><topic>Particle and Nuclear Physics</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar radiation</topic><topic>Structural analysis</topic><topic>Theoretical</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivakumar, S.</creatorcontrib><creatorcontrib>Robinson, Yengkokpam</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Korean Physical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivakumar, S.</au><au>Robinson, Yengkokpam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices</atitle><jtitle>Journal of the Korean Physical Society</jtitle><stitle>J. Korean Phys. Soc</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>82</volume><issue>12</issue><spage>1196</spage><epage>1210</epage><pages>1196-1210</pages><issn>0374-4884</issn><eissn>1976-8524</eissn><abstract>This paper studies the synthesis of Zn 1-x Mn x O ( x  = 0.00, 0.03, 0.06) nanoparticles using the co-precipitation method. The structural, morphological and optical properties were characterized by XRD, FTIR, SEM, HR-TEM and UV–Visible DRS analysis. The structural analysis indicated a hexagonal shape with good crystallinity of the samples. The FTIR absorption peaks confirmed the formation of Zn–O bonding. The surface morphology and particle size were observed by SEM and HR-TEM analysis. The EDS spectra determined the presence of elements Zn, Mn, and O in the samples. The optical band-gap of Mn-doped nanoparticles decreased with increasing concentration from 3.27 eV to 3.09 eV. The photocatalytic activity has been observed with methylene blue (MB) dye under solar irradiation. The Zn 0.94 Mn 0.06 O (Mn = 0.06) nanoparticles photocatalyst has the highest degradation efficiency at 94.08% within 180 min. This result shows that the Mn-doped ZnO enhanced the performance of the photocatalytic activity. In electrochemical performance analysis, undoped and Mn-doped electrodes have been studied 10 mV/s to 100 mV/s scan rate. Mn-doped electrodes decrease the specific capacitance due to low surface area. However, all the undoped and Mn-doped electrodes possess reduction and oxidation peaks, which is considerable for suitable electrode materials for energy storage devices.</abstract><cop>Seoul</cop><pub>The Korean Physical Society</pub><doi>10.1007/s40042-023-00802-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7212-713X</orcidid><orcidid>https://orcid.org/0000-0003-2222-6046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0374-4884
ispartof Journal of the Korean Physical Society, 2023-06, Vol.82 (12), p.1196-1210
issn 0374-4884
1976-8524
language eng
recordid cdi_proquest_journals_2829089284
source SpringerLink Journals - AutoHoldings
subjects Catalytic activity
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Manganese
Mathematical and Computational Physics
Methylene blue
Morphology
Nanoparticles
Optical properties
Original Paper - Condensed Matter
Oxidation
Particle and Nuclear Physics
Photocatalysis
Photodegradation
Physics
Physics and Astronomy
Solar radiation
Structural analysis
Theoretical
Zinc oxide
title Effect and design of Mn2+ doped ZnO nanostructures for photodegradation and energy storage devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20and%20design%20of%20Mn2+%20doped%20ZnO%20nanostructures%20for%20photodegradation%20and%20energy%20storage%20devices&rft.jtitle=Journal%20of%20the%20Korean%20Physical%20Society&rft.au=Sivakumar,%20S.&rft.date=2023-06-01&rft.volume=82&rft.issue=12&rft.spage=1196&rft.epage=1210&rft.pages=1196-1210&rft.issn=0374-4884&rft.eissn=1976-8524&rft_id=info:doi/10.1007/s40042-023-00802-0&rft_dat=%3Cproquest_cross%3E2829089284%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829089284&rft_id=info:pmid/&rfr_iscdi=true