A continuous convolutional trainable filter for modelling unstructured data
Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a traina...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2023-08, Vol.72 (2), p.253-265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 2 |
container_start_page | 253 |
container_title | Computational mechanics |
container_volume | 72 |
creator | Coscia, Dario Meneghetti, Laura Demo, Nicola Stabile, Giovanni Rozza, Gianluigi |
description | Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well. |
doi_str_mv | 10.1007/s00466-023-02291-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828971904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828971904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSXyWWWpXjDghtdh8wkKVPSpOYi-PZOHcGdi8M5i-__OXwAXGN0ixESdxmhlnOICJ2GdBjiE7DALSUQdaQ9BQuEhYSCC3YOLnLeIYSZpGwBXlbNEEMZQ401H8_P6GsZY9C-KUmPQffeNm70xabGxdTso7Hej2Hb1JBLqkOpyZrG6KIvwZnTPtur370E7w_3b-snuHl9fF6vNnCgnBaISc84oWywjktirRCaOsew63uBWkGMcV3HKBWYIu6kpNYxQ7XridCm6zldgpu595DiR7W5qF2safo4KyKJ7ATuUDtRZKaGFHNO1qlDGvc6fSmM1FGamqWpSZr6kabwFKJzKE9w2Nr0V_1P6hu8WHBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828971904</pqid></control><display><type>article</type><title>A continuous convolutional trainable filter for modelling unstructured data</title><source>Springer Nature - Complete Springer Journals</source><creator>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</creator><creatorcontrib>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</creatorcontrib><description>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-023-02291-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Artificial neural networks ; Classical and Continuum Physics ; Computational Science and Engineering ; Deep learning ; Domains ; Engineering ; Informatics ; Machine learning ; Mechanics ; Neural networks ; Original Paper ; Theoretical and Applied Mechanics ; Unstructured data</subject><ispartof>Computational mechanics, 2023-08, Vol.72 (2), p.253-265</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</citedby><cites>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-023-02291-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-023-02291-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Coscia, Dario</creatorcontrib><creatorcontrib>Meneghetti, Laura</creatorcontrib><creatorcontrib>Demo, Nicola</creatorcontrib><creatorcontrib>Stabile, Giovanni</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><title>A continuous convolutional trainable filter for modelling unstructured data</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Engineering</subject><subject>Informatics</subject><subject>Machine learning</subject><subject>Mechanics</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Unstructured data</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSXyWWWpXjDghtdh8wkKVPSpOYi-PZOHcGdi8M5i-__OXwAXGN0ixESdxmhlnOICJ2GdBjiE7DALSUQdaQ9BQuEhYSCC3YOLnLeIYSZpGwBXlbNEEMZQ401H8_P6GsZY9C-KUmPQffeNm70xabGxdTso7Hej2Hb1JBLqkOpyZrG6KIvwZnTPtur370E7w_3b-snuHl9fF6vNnCgnBaISc84oWywjktirRCaOsew63uBWkGMcV3HKBWYIu6kpNYxQ7XridCm6zldgpu595DiR7W5qF2safo4KyKJ7ATuUDtRZKaGFHNO1qlDGvc6fSmM1FGamqWpSZr6kabwFKJzKE9w2Nr0V_1P6hu8WHBQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Coscia, Dario</creator><creator>Meneghetti, Laura</creator><creator>Demo, Nicola</creator><creator>Stabile, Giovanni</creator><creator>Rozza, Gianluigi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230801</creationdate><title>A continuous convolutional trainable filter for modelling unstructured data</title><author>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Engineering</topic><topic>Informatics</topic><topic>Machine learning</topic><topic>Mechanics</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coscia, Dario</creatorcontrib><creatorcontrib>Meneghetti, Laura</creatorcontrib><creatorcontrib>Demo, Nicola</creatorcontrib><creatorcontrib>Stabile, Giovanni</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coscia, Dario</au><au>Meneghetti, Laura</au><au>Demo, Nicola</au><au>Stabile, Giovanni</au><au>Rozza, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous convolutional trainable filter for modelling unstructured data</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>72</volume><issue>2</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-023-02291-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2023-08, Vol.72 (2), p.253-265 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2828971904 |
source | Springer Nature - Complete Springer Journals |
subjects | Approximation Artificial neural networks Classical and Continuum Physics Computational Science and Engineering Deep learning Domains Engineering Informatics Machine learning Mechanics Neural networks Original Paper Theoretical and Applied Mechanics Unstructured data |
title | A continuous convolutional trainable filter for modelling unstructured data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20convolutional%20trainable%20filter%20for%20modelling%20unstructured%20data&rft.jtitle=Computational%20mechanics&rft.au=Coscia,%20Dario&rft.date=2023-08-01&rft.volume=72&rft.issue=2&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-023-02291-1&rft_dat=%3Cproquest_cross%3E2828971904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828971904&rft_id=info:pmid/&rfr_iscdi=true |