A continuous convolutional trainable filter for modelling unstructured data

Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a traina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2023-08, Vol.72 (2), p.253-265
Hauptverfasser: Coscia, Dario, Meneghetti, Laura, Demo, Nicola, Stabile, Giovanni, Rozza, Gianluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 253
container_title Computational mechanics
container_volume 72
creator Coscia, Dario
Meneghetti, Laura
Demo, Nicola
Stabile, Giovanni
Rozza, Gianluigi
description Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.
doi_str_mv 10.1007/s00466-023-02291-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828971904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828971904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSXyWWWpXjDghtdh8wkKVPSpOYi-PZOHcGdi8M5i-__OXwAXGN0ixESdxmhlnOICJ2GdBjiE7DALSUQdaQ9BQuEhYSCC3YOLnLeIYSZpGwBXlbNEEMZQ401H8_P6GsZY9C-KUmPQffeNm70xabGxdTso7Hej2Hb1JBLqkOpyZrG6KIvwZnTPtur370E7w_3b-snuHl9fF6vNnCgnBaISc84oWywjktirRCaOsew63uBWkGMcV3HKBWYIu6kpNYxQ7XridCm6zldgpu595DiR7W5qF2safo4KyKJ7ATuUDtRZKaGFHNO1qlDGvc6fSmM1FGamqWpSZr6kabwFKJzKE9w2Nr0V_1P6hu8WHBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828971904</pqid></control><display><type>article</type><title>A continuous convolutional trainable filter for modelling unstructured data</title><source>Springer Nature - Complete Springer Journals</source><creator>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</creator><creatorcontrib>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</creatorcontrib><description>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-023-02291-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Artificial neural networks ; Classical and Continuum Physics ; Computational Science and Engineering ; Deep learning ; Domains ; Engineering ; Informatics ; Machine learning ; Mechanics ; Neural networks ; Original Paper ; Theoretical and Applied Mechanics ; Unstructured data</subject><ispartof>Computational mechanics, 2023-08, Vol.72 (2), p.253-265</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</citedby><cites>FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-023-02291-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-023-02291-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Coscia, Dario</creatorcontrib><creatorcontrib>Meneghetti, Laura</creatorcontrib><creatorcontrib>Demo, Nicola</creatorcontrib><creatorcontrib>Stabile, Giovanni</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><title>A continuous convolutional trainable filter for modelling unstructured data</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</description><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Deep learning</subject><subject>Domains</subject><subject>Engineering</subject><subject>Informatics</subject><subject>Machine learning</subject><subject>Mechanics</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Unstructured data</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAdTSXyWWWpXjDghtdh8wkKVPSpOYi-PZOHcGdi8M5i-__OXwAXGN0ixESdxmhlnOICJ2GdBjiE7DALSUQdaQ9BQuEhYSCC3YOLnLeIYSZpGwBXlbNEEMZQ401H8_P6GsZY9C-KUmPQffeNm70xabGxdTso7Hej2Hb1JBLqkOpyZrG6KIvwZnTPtur370E7w_3b-snuHl9fF6vNnCgnBaISc84oWywjktirRCaOsew63uBWkGMcV3HKBWYIu6kpNYxQ7XridCm6zldgpu595DiR7W5qF2safo4KyKJ7ATuUDtRZKaGFHNO1qlDGvc6fSmM1FGamqWpSZr6kabwFKJzKE9w2Nr0V_1P6hu8WHBQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Coscia, Dario</creator><creator>Meneghetti, Laura</creator><creator>Demo, Nicola</creator><creator>Stabile, Giovanni</creator><creator>Rozza, Gianluigi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230801</creationdate><title>A continuous convolutional trainable filter for modelling unstructured data</title><author>Coscia, Dario ; Meneghetti, Laura ; Demo, Nicola ; Stabile, Giovanni ; Rozza, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-12b56235cef682ee77a3ff51fbb70472ddf9953371306f883ef5d3afb27ad9b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Deep learning</topic><topic>Domains</topic><topic>Engineering</topic><topic>Informatics</topic><topic>Machine learning</topic><topic>Mechanics</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coscia, Dario</creatorcontrib><creatorcontrib>Meneghetti, Laura</creatorcontrib><creatorcontrib>Demo, Nicola</creatorcontrib><creatorcontrib>Stabile, Giovanni</creatorcontrib><creatorcontrib>Rozza, Gianluigi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coscia, Dario</au><au>Meneghetti, Laura</au><au>Demo, Nicola</au><au>Stabile, Giovanni</au><au>Rozza, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous convolutional trainable filter for modelling unstructured data</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>72</volume><issue>2</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-023-02291-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2023-08, Vol.72 (2), p.253-265
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2828971904
source Springer Nature - Complete Springer Journals
subjects Approximation
Artificial neural networks
Classical and Continuum Physics
Computational Science and Engineering
Deep learning
Domains
Engineering
Informatics
Machine learning
Mechanics
Neural networks
Original Paper
Theoretical and Applied Mechanics
Unstructured data
title A continuous convolutional trainable filter for modelling unstructured data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20convolutional%20trainable%20filter%20for%20modelling%20unstructured%20data&rft.jtitle=Computational%20mechanics&rft.au=Coscia,%20Dario&rft.date=2023-08-01&rft.volume=72&rft.issue=2&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-023-02291-1&rft_dat=%3Cproquest_cross%3E2828971904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828971904&rft_id=info:pmid/&rfr_iscdi=true