An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application
Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2023-08, Vol.38 (8), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | IEEE transactions on power electronics |
container_volume | 38 |
creator | Bi, Yuxuan Wu, Chao Xu, Junzhong Li, Houji Wang, Yong Shu, Guohua Soeiro, Thiago Batista |
description | Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method. |
doi_str_mv | 10.1109/TPEL.2023.3281085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2828941061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138423</ieee_id><sourcerecordid>2828941061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSXa3ybHUWguVFqw9CSGbzLZb6mbNbhHf3pT24GkY-L9_ho-Qe2ADAKaeVsvJfMAZFwPBJTCZXZAeqBQSBmx4SXpMyiyRSolrctO2O8YgzRj0yOeoprO6w00wHTq69D8Y6DNaf2j2Vb2hb9htvaOlD_Q97ntMllvTIp2s6aIuvAmOjrcmbCJV1XTNp3TURNKarvL1Lbkqzb7Fu_Psk4-XyWr8mswX09l4NE8sV2mXWItKKJcXthwygTnGP7l1uXEFz-2QpSrlLHd5lkFZcFtgJqxDCc6CNVkpRZ88nnqb4L8P2HZ65w-hjic1l1xGDSyHmIJTygbftgFL3YTqy4RfDUwfJeqjRH2UqM8SI_NwYipE_JcHIVMuxB9_Km1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828941061</pqid></control><display><type>article</type><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><source>IEEE Electronic Library (IEL)</source><creator>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</creator><creatorcontrib>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</creatorcontrib><description>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3281085</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active power decoupling ; auxiliary power modules ; Avalanche photodiodes ; Batteries ; Capacitance ; Capacitors ; Circuits ; Control methods ; Costs ; Decoupling method ; Electric filters ; Electric vehicle charging ; Energy conversion efficiency ; Energy storage ; Multichip modules ; second-order current ripple suppression ; single-phase onboard charging system ; soft-switching ; Switches ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</citedby><cites>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</cites><orcidid>0000-0002-8361-9110 ; 0000-0002-7550-2502 ; 0000-0001-8742-1307 ; 0000-0003-3178-5413 ; 0000-0003-1980-9021 ; 0000-0003-0181-4738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10138423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bi, Yuxuan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Li, Houji</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Shu, Guohua</creatorcontrib><creatorcontrib>Soeiro, Thiago Batista</creatorcontrib><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</description><subject>Active power decoupling</subject><subject>auxiliary power modules</subject><subject>Avalanche photodiodes</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Control methods</subject><subject>Costs</subject><subject>Decoupling method</subject><subject>Electric filters</subject><subject>Electric vehicle charging</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Multichip modules</subject><subject>second-order current ripple suppression</subject><subject>single-phase onboard charging system</subject><subject>soft-switching</subject><subject>Switches</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSXa3ybHUWguVFqw9CSGbzLZb6mbNbhHf3pT24GkY-L9_ho-Qe2ADAKaeVsvJfMAZFwPBJTCZXZAeqBQSBmx4SXpMyiyRSolrctO2O8YgzRj0yOeoprO6w00wHTq69D8Y6DNaf2j2Vb2hb9htvaOlD_Q97ntMllvTIp2s6aIuvAmOjrcmbCJV1XTNp3TURNKarvL1Lbkqzb7Fu_Psk4-XyWr8mswX09l4NE8sV2mXWItKKJcXthwygTnGP7l1uXEFz-2QpSrlLHd5lkFZcFtgJqxDCc6CNVkpRZ88nnqb4L8P2HZ65w-hjic1l1xGDSyHmIJTygbftgFL3YTqy4RfDUwfJeqjRH2UqM8SI_NwYipE_JcHIVMuxB9_Km1q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bi, Yuxuan</creator><creator>Wu, Chao</creator><creator>Xu, Junzhong</creator><creator>Li, Houji</creator><creator>Wang, Yong</creator><creator>Shu, Guohua</creator><creator>Soeiro, Thiago Batista</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8361-9110</orcidid><orcidid>https://orcid.org/0000-0002-7550-2502</orcidid><orcidid>https://orcid.org/0000-0001-8742-1307</orcidid><orcidid>https://orcid.org/0000-0003-3178-5413</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0003-0181-4738</orcidid></search><sort><creationdate>20230801</creationdate><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><author>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active power decoupling</topic><topic>auxiliary power modules</topic><topic>Avalanche photodiodes</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Control methods</topic><topic>Costs</topic><topic>Decoupling method</topic><topic>Electric filters</topic><topic>Electric vehicle charging</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Multichip modules</topic><topic>second-order current ripple suppression</topic><topic>single-phase onboard charging system</topic><topic>soft-switching</topic><topic>Switches</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yuxuan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Li, Houji</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Shu, Guohua</creatorcontrib><creatorcontrib>Soeiro, Thiago Batista</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bi, Yuxuan</au><au>Wu, Chao</au><au>Xu, Junzhong</au><au>Li, Houji</au><au>Wang, Yong</au><au>Shu, Guohua</au><au>Soeiro, Thiago Batista</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>8</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3281085</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8361-9110</orcidid><orcidid>https://orcid.org/0000-0002-7550-2502</orcidid><orcidid>https://orcid.org/0000-0001-8742-1307</orcidid><orcidid>https://orcid.org/0000-0003-3178-5413</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0003-0181-4738</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-11 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_2828941061 |
source | IEEE Electronic Library (IEL) |
subjects | Active power decoupling auxiliary power modules Avalanche photodiodes Batteries Capacitance Capacitors Circuits Control methods Costs Decoupling method Electric filters Electric vehicle charging Energy conversion efficiency Energy storage Multichip modules second-order current ripple suppression single-phase onboard charging system soft-switching Switches Voltage control |
title | An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Power%20Decoupling%20Method%20for%20Single-Phase%20EV%20Onboard%20Charger%20in%20V2G%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Bi,%20Yuxuan&rft.date=2023-08-01&rft.volume=38&rft.issue=8&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3281085&rft_dat=%3Cproquest_RIE%3E2828941061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828941061&rft_id=info:pmid/&rft_ieee_id=10138423&rfr_iscdi=true |