An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application

Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-08, Vol.38 (8), p.1-11
Hauptverfasser: Bi, Yuxuan, Wu, Chao, Xu, Junzhong, Li, Houji, Wang, Yong, Shu, Guohua, Soeiro, Thiago Batista
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 8
container_start_page 1
container_title IEEE transactions on power electronics
container_volume 38
creator Bi, Yuxuan
Wu, Chao
Xu, Junzhong
Li, Houji
Wang, Yong
Shu, Guohua
Soeiro, Thiago Batista
description Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.
doi_str_mv 10.1109/TPEL.2023.3281085
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2828941061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10138423</ieee_id><sourcerecordid>2828941061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSXa3ybHUWguVFqw9CSGbzLZb6mbNbhHf3pT24GkY-L9_ho-Qe2ADAKaeVsvJfMAZFwPBJTCZXZAeqBQSBmx4SXpMyiyRSolrctO2O8YgzRj0yOeoprO6w00wHTq69D8Y6DNaf2j2Vb2hb9htvaOlD_Q97ntMllvTIp2s6aIuvAmOjrcmbCJV1XTNp3TURNKarvL1Lbkqzb7Fu_Psk4-XyWr8mswX09l4NE8sV2mXWItKKJcXthwygTnGP7l1uXEFz-2QpSrlLHd5lkFZcFtgJqxDCc6CNVkpRZ88nnqb4L8P2HZ65w-hjic1l1xGDSyHmIJTygbftgFL3YTqy4RfDUwfJeqjRH2UqM8SI_NwYipE_JcHIVMuxB9_Km1q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828941061</pqid></control><display><type>article</type><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><source>IEEE Electronic Library (IEL)</source><creator>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</creator><creatorcontrib>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</creatorcontrib><description>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3281085</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active power decoupling ; auxiliary power modules ; Avalanche photodiodes ; Batteries ; Capacitance ; Capacitors ; Circuits ; Control methods ; Costs ; Decoupling method ; Electric filters ; Electric vehicle charging ; Energy conversion efficiency ; Energy storage ; Multichip modules ; second-order current ripple suppression ; single-phase onboard charging system ; soft-switching ; Switches ; Voltage control</subject><ispartof>IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</citedby><cites>FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</cites><orcidid>0000-0002-8361-9110 ; 0000-0002-7550-2502 ; 0000-0001-8742-1307 ; 0000-0003-3178-5413 ; 0000-0003-1980-9021 ; 0000-0003-0181-4738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10138423$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10138423$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bi, Yuxuan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Li, Houji</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Shu, Guohua</creatorcontrib><creatorcontrib>Soeiro, Thiago Batista</creatorcontrib><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</description><subject>Active power decoupling</subject><subject>auxiliary power modules</subject><subject>Avalanche photodiodes</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Control methods</subject><subject>Costs</subject><subject>Decoupling method</subject><subject>Electric filters</subject><subject>Electric vehicle charging</subject><subject>Energy conversion efficiency</subject><subject>Energy storage</subject><subject>Multichip modules</subject><subject>second-order current ripple suppression</subject><subject>single-phase onboard charging system</subject><subject>soft-switching</subject><subject>Switches</subject><subject>Voltage control</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN6aSXa3ybHUWguVFqw9CSGbzLZb6mbNbhHf3pT24GkY-L9_ho-Qe2ADAKaeVsvJfMAZFwPBJTCZXZAeqBQSBmx4SXpMyiyRSolrctO2O8YgzRj0yOeoprO6w00wHTq69D8Y6DNaf2j2Vb2hb9htvaOlD_Q97ntMllvTIp2s6aIuvAmOjrcmbCJV1XTNp3TURNKarvL1Lbkqzb7Fu_Psk4-XyWr8mswX09l4NE8sV2mXWItKKJcXthwygTnGP7l1uXEFz-2QpSrlLHd5lkFZcFtgJqxDCc6CNVkpRZ88nnqb4L8P2HZ65w-hjic1l1xGDSyHmIJTygbftgFL3YTqy4RfDUwfJeqjRH2UqM8SI_NwYipE_JcHIVMuxB9_Km1q</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Bi, Yuxuan</creator><creator>Wu, Chao</creator><creator>Xu, Junzhong</creator><creator>Li, Houji</creator><creator>Wang, Yong</creator><creator>Shu, Guohua</creator><creator>Soeiro, Thiago Batista</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8361-9110</orcidid><orcidid>https://orcid.org/0000-0002-7550-2502</orcidid><orcidid>https://orcid.org/0000-0001-8742-1307</orcidid><orcidid>https://orcid.org/0000-0003-3178-5413</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0003-0181-4738</orcidid></search><sort><creationdate>20230801</creationdate><title>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</title><author>Bi, Yuxuan ; Wu, Chao ; Xu, Junzhong ; Li, Houji ; Wang, Yong ; Shu, Guohua ; Soeiro, Thiago Batista</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cce939d6bcf703e6e8992cd6adb26c70494206d6551fb2cbe53cde81dc1ca5f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active power decoupling</topic><topic>auxiliary power modules</topic><topic>Avalanche photodiodes</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Control methods</topic><topic>Costs</topic><topic>Decoupling method</topic><topic>Electric filters</topic><topic>Electric vehicle charging</topic><topic>Energy conversion efficiency</topic><topic>Energy storage</topic><topic>Multichip modules</topic><topic>second-order current ripple suppression</topic><topic>single-phase onboard charging system</topic><topic>soft-switching</topic><topic>Switches</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Yuxuan</creatorcontrib><creatorcontrib>Wu, Chao</creatorcontrib><creatorcontrib>Xu, Junzhong</creatorcontrib><creatorcontrib>Li, Houji</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Shu, Guohua</creatorcontrib><creatorcontrib>Soeiro, Thiago Batista</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bi, Yuxuan</au><au>Wu, Chao</au><au>Xu, Junzhong</au><au>Li, Houji</au><au>Wang, Yong</au><au>Shu, Guohua</au><au>Soeiro, Thiago Batista</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>38</volume><issue>8</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Instead of bulky passive filters, the active power decoupling (APD) method can be adopted to suppress the 2nd-order ripple power in the DC-bus of the single-phase electric vehicle (EV) onboard charging system. However, the traditional APD methods require additional power switches and energy storage devices, which increases the cost and significantly reduces the power conversion efficiency. To tackle these problems, an integrated method of utilizing the auxiliary power module to form a series-connected APD circuit is proposed in this paper. Without additional switches and energy storage devices, the APD circuit only needs to compensate less than 10% of the rated power, while realizing soft-switching operation. In addition, the corresponding control method can further reduce the voltage stress of the switches on the high-voltage side of the converter, and increase the efficiency of the system. Finally, a 2kW single-phase charging system prototype is built to verify the feasibility and effectiveness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2023.3281085</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8361-9110</orcidid><orcidid>https://orcid.org/0000-0002-7550-2502</orcidid><orcidid>https://orcid.org/0000-0001-8742-1307</orcidid><orcidid>https://orcid.org/0000-0003-3178-5413</orcidid><orcidid>https://orcid.org/0000-0003-1980-9021</orcidid><orcidid>https://orcid.org/0000-0003-0181-4738</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-08, Vol.38 (8), p.1-11
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_2828941061
source IEEE Electronic Library (IEL)
subjects Active power decoupling
auxiliary power modules
Avalanche photodiodes
Batteries
Capacitance
Capacitors
Circuits
Control methods
Costs
Decoupling method
Electric filters
Electric vehicle charging
Energy conversion efficiency
Energy storage
Multichip modules
second-order current ripple suppression
single-phase onboard charging system
soft-switching
Switches
Voltage control
title An Integrated Power Decoupling Method for Single-Phase EV Onboard Charger in V2G Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Integrated%20Power%20Decoupling%20Method%20for%20Single-Phase%20EV%20Onboard%20Charger%20in%20V2G%20Application&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Bi,%20Yuxuan&rft.date=2023-08-01&rft.volume=38&rft.issue=8&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3281085&rft_dat=%3Cproquest_RIE%3E2828941061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828941061&rft_id=info:pmid/&rft_ieee_id=10138423&rfr_iscdi=true