Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation

As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2023-07, Vol.42 (7), p.2324-2334
Hauptverfasser: Wei, Yue-Wei, Yang, Guang, Xu, Xi-Xi, Liu, Yan-Yan, Kang, Nai-Xin, Li, Bao-Jun, Wang, Yong-Zhao, Zhao, Yong-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2334
container_issue 7
container_start_page 2324
container_title Rare metals
container_volume 42
creator Wei, Yue-Wei
Yang, Guang
Xu, Xi-Xi
Liu, Yan-Yan
Kang, Nai-Xin
Li, Bao-Jun
Wang, Yong-Zhao
Zhao, Yong-Xiang
description As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min −1 at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy ( E a  = 36.8 kJ⋅mol −1 ) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy. Graphical abstract
doi_str_mv 10.1007/s12598-022-02246-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828889182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828889182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhRtRcBy9gKuA69ZKdac7vRTxDwRBdB0ymYrTQ5uMSXox4sI7eENPYsYR3Ll4VEG99wq-ojjmcMoB2rPIUXSyBMSN6qaEnWLCZdOWLZdiN-8AvASBfL84iHEJUNdNA5Pi_WlIQdveEXsYmdPOr3RIvRkoMu3MwgeaM--YycvXx2dc0DCwmMJo0rg5vZEf-kSl0WGWbdYHRtb2pieXmNFJD-vYR-YtW6znwT-TY1kUdOq9Oyz2rB4iHf3OafF0dfl4cVPe3V_fXpzflabiXSq5QDIC0UgpsJadxNpQi8LULVkxQ13PZVXNO9vM-KzrAFBUhoMVXVsDGqqmxcm2dxX860gxqaUfg8svFUqUUnZcYnbh1mWCjzGQVavQv-iwVhzUhrLaUlaZsPqhrCCHqm0oZrN7pvBX_U_qG8gxgqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828889182</pqid></control><display><type>article</type><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</creator><creatorcontrib>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</creatorcontrib><description>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min −1 at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy ( E a  = 36.8 kJ⋅mol −1 ) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02246-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Ammonia ; Aqueous solutions ; Biomaterials ; Carbon ; Catalysis ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry and Materials Science ; Clean energy ; Constraining ; Core-shell structure ; Dehydrogenation ; Energy ; High temperature ; Hydrogen production ; Hydrolysis ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoparticles ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Room temperature ; Ruthenium ; Ultrafines ; Zeolites</subject><ispartof>Rare metals, 2023-07, Vol.42 (7), p.2324-2334</ispartof><rights>Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</citedby><cites>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</cites><orcidid>0000-0001-8325-3772 ; 0000-0001-9389-4784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02246-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02246-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wei, Yue-Wei</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xu, Xi-Xi</creatorcontrib><creatorcontrib>Liu, Yan-Yan</creatorcontrib><creatorcontrib>Kang, Nai-Xin</creatorcontrib><creatorcontrib>Li, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Yong-Zhao</creatorcontrib><creatorcontrib>Zhao, Yong-Xiang</creatorcontrib><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min −1 at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy ( E a  = 36.8 kJ⋅mol −1 ) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy. Graphical abstract</description><subject>Ammonia</subject><subject>Aqueous solutions</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clean energy</subject><subject>Constraining</subject><subject>Core-shell structure</subject><subject>Dehydrogenation</subject><subject>Energy</subject><subject>High temperature</subject><subject>Hydrogen production</subject><subject>Hydrolysis</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Ruthenium</subject><subject>Ultrafines</subject><subject>Zeolites</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhRtRcBy9gKuA69ZKdac7vRTxDwRBdB0ymYrTQ5uMSXox4sI7eENPYsYR3Ll4VEG99wq-ojjmcMoB2rPIUXSyBMSN6qaEnWLCZdOWLZdiN-8AvASBfL84iHEJUNdNA5Pi_WlIQdveEXsYmdPOr3RIvRkoMu3MwgeaM--YycvXx2dc0DCwmMJo0rg5vZEf-kSl0WGWbdYHRtb2pieXmNFJD-vYR-YtW6znwT-TY1kUdOq9Oyz2rB4iHf3OafF0dfl4cVPe3V_fXpzflabiXSq5QDIC0UgpsJadxNpQi8LULVkxQ13PZVXNO9vM-KzrAFBUhoMVXVsDGqqmxcm2dxX860gxqaUfg8svFUqUUnZcYnbh1mWCjzGQVavQv-iwVhzUhrLaUlaZsPqhrCCHqm0oZrN7pvBX_U_qG8gxgqE</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wei, Yue-Wei</creator><creator>Yang, Guang</creator><creator>Xu, Xi-Xi</creator><creator>Liu, Yan-Yan</creator><creator>Kang, Nai-Xin</creator><creator>Li, Bao-Jun</creator><creator>Wang, Yong-Zhao</creator><creator>Zhao, Yong-Xiang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8325-3772</orcidid><orcidid>https://orcid.org/0000-0001-9389-4784</orcidid></search><sort><creationdate>20230701</creationdate><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><author>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Aqueous solutions</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clean energy</topic><topic>Constraining</topic><topic>Core-shell structure</topic><topic>Dehydrogenation</topic><topic>Energy</topic><topic>High temperature</topic><topic>Hydrogen production</topic><topic>Hydrolysis</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Ruthenium</topic><topic>Ultrafines</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yue-Wei</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xu, Xi-Xi</creatorcontrib><creatorcontrib>Liu, Yan-Yan</creatorcontrib><creatorcontrib>Kang, Nai-Xin</creatorcontrib><creatorcontrib>Li, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Yong-Zhao</creatorcontrib><creatorcontrib>Zhao, Yong-Xiang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yue-Wei</au><au>Yang, Guang</au><au>Xu, Xi-Xi</au><au>Liu, Yan-Yan</au><au>Kang, Nai-Xin</au><au>Li, Bao-Jun</au><au>Wang, Yong-Zhao</au><au>Zhao, Yong-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>2324</spage><epage>2334</epage><pages>2324-2334</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min −1 at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy ( E a  = 36.8 kJ⋅mol −1 ) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02246-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8325-3772</orcidid><orcidid>https://orcid.org/0000-0001-9389-4784</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2023-07, Vol.42 (7), p.2324-2334
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2828889182
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Ammonia
Aqueous solutions
Biomaterials
Carbon
Catalysis
Catalysts
Catalytic activity
Chemical synthesis
Chemistry and Materials Science
Clean energy
Constraining
Core-shell structure
Dehydrogenation
Energy
High temperature
Hydrogen production
Hydrolysis
Materials Engineering
Materials Science
Metallic Materials
Nanoparticles
Nanoscale Science and Technology
Original Article
Physical Chemistry
Room temperature
Ruthenium
Ultrafines
Zeolites
title Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafine%20Ru%20nanoparticles%20anchored%20on%20core%E2%80%93shell%20structured%20zeolite-carbon%20for%20efficient%20catalysis%20of%20hydrogen%20generation&rft.jtitle=Rare%20metals&rft.au=Wei,%20Yue-Wei&rft.date=2023-07-01&rft.volume=42&rft.issue=7&rft.spage=2324&rft.epage=2334&rft.pages=2324-2334&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02246-0&rft_dat=%3Cproquest_cross%3E2828889182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828889182&rft_id=info:pmid/&rfr_iscdi=true