Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation
As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the c...
Gespeichert in:
Veröffentlicht in: | Rare metals 2023-07, Vol.42 (7), p.2324-2334 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2334 |
---|---|
container_issue | 7 |
container_start_page | 2324 |
container_title | Rare metals |
container_volume | 42 |
creator | Wei, Yue-Wei Yang, Guang Xu, Xi-Xi Liu, Yan-Yan Kang, Nai-Xin Li, Bao-Jun Wang, Yong-Zhao Zhao, Yong-Xiang |
description | As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min
−1
at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy (
E
a
= 36.8 kJ⋅mol
−1
) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy.
Graphical abstract |
doi_str_mv | 10.1007/s12598-022-02246-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828889182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828889182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhRtRcBy9gKuA69ZKdac7vRTxDwRBdB0ymYrTQ5uMSXox4sI7eENPYsYR3Ll4VEG99wq-ojjmcMoB2rPIUXSyBMSN6qaEnWLCZdOWLZdiN-8AvASBfL84iHEJUNdNA5Pi_WlIQdveEXsYmdPOr3RIvRkoMu3MwgeaM--YycvXx2dc0DCwmMJo0rg5vZEf-kSl0WGWbdYHRtb2pieXmNFJD-vYR-YtW6znwT-TY1kUdOq9Oyz2rB4iHf3OafF0dfl4cVPe3V_fXpzflabiXSq5QDIC0UgpsJadxNpQi8LULVkxQ13PZVXNO9vM-KzrAFBUhoMVXVsDGqqmxcm2dxX860gxqaUfg8svFUqUUnZcYnbh1mWCjzGQVavQv-iwVhzUhrLaUlaZsPqhrCCHqm0oZrN7pvBX_U_qG8gxgqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828889182</pqid></control><display><type>article</type><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</creator><creatorcontrib>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</creatorcontrib><description>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min
−1
at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy (
E
a
= 36.8 kJ⋅mol
−1
) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-022-02246-0</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Ammonia ; Aqueous solutions ; Biomaterials ; Carbon ; Catalysis ; Catalysts ; Catalytic activity ; Chemical synthesis ; Chemistry and Materials Science ; Clean energy ; Constraining ; Core-shell structure ; Dehydrogenation ; Energy ; High temperature ; Hydrogen production ; Hydrolysis ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoparticles ; Nanoscale Science and Technology ; Original Article ; Physical Chemistry ; Room temperature ; Ruthenium ; Ultrafines ; Zeolites</subject><ispartof>Rare metals, 2023-07, Vol.42 (7), p.2324-2334</ispartof><rights>Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</citedby><cites>FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</cites><orcidid>0000-0001-8325-3772 ; 0000-0001-9389-4784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-022-02246-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-022-02246-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Wei, Yue-Wei</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xu, Xi-Xi</creatorcontrib><creatorcontrib>Liu, Yan-Yan</creatorcontrib><creatorcontrib>Kang, Nai-Xin</creatorcontrib><creatorcontrib>Li, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Yong-Zhao</creatorcontrib><creatorcontrib>Zhao, Yong-Xiang</creatorcontrib><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min
−1
at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy (
E
a
= 36.8 kJ⋅mol
−1
) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy.
Graphical abstract</description><subject>Ammonia</subject><subject>Aqueous solutions</subject><subject>Biomaterials</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Clean energy</subject><subject>Constraining</subject><subject>Core-shell structure</subject><subject>Dehydrogenation</subject><subject>Energy</subject><subject>High temperature</subject><subject>Hydrogen production</subject><subject>Hydrolysis</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoparticles</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Ruthenium</subject><subject>Ultrafines</subject><subject>Zeolites</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhRtRcBy9gKuA69ZKdac7vRTxDwRBdB0ymYrTQ5uMSXox4sI7eENPYsYR3Ll4VEG99wq-ojjmcMoB2rPIUXSyBMSN6qaEnWLCZdOWLZdiN-8AvASBfL84iHEJUNdNA5Pi_WlIQdveEXsYmdPOr3RIvRkoMu3MwgeaM--YycvXx2dc0DCwmMJo0rg5vZEf-kSl0WGWbdYHRtb2pieXmNFJD-vYR-YtW6znwT-TY1kUdOq9Oyz2rB4iHf3OafF0dfl4cVPe3V_fXpzflabiXSq5QDIC0UgpsJadxNpQi8LULVkxQ13PZVXNO9vM-KzrAFBUhoMVXVsDGqqmxcm2dxX860gxqaUfg8svFUqUUnZcYnbh1mWCjzGQVavQv-iwVhzUhrLaUlaZsPqhrCCHqm0oZrN7pvBX_U_qG8gxgqE</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wei, Yue-Wei</creator><creator>Yang, Guang</creator><creator>Xu, Xi-Xi</creator><creator>Liu, Yan-Yan</creator><creator>Kang, Nai-Xin</creator><creator>Li, Bao-Jun</creator><creator>Wang, Yong-Zhao</creator><creator>Zhao, Yong-Xiang</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-8325-3772</orcidid><orcidid>https://orcid.org/0000-0001-9389-4784</orcidid></search><sort><creationdate>20230701</creationdate><title>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</title><author>Wei, Yue-Wei ; Yang, Guang ; Xu, Xi-Xi ; Liu, Yan-Yan ; Kang, Nai-Xin ; Li, Bao-Jun ; Wang, Yong-Zhao ; Zhao, Yong-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-152ec522c8852489824ce725c47ef5b2a4d833d9f6b1b9900253c10f597402ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ammonia</topic><topic>Aqueous solutions</topic><topic>Biomaterials</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Clean energy</topic><topic>Constraining</topic><topic>Core-shell structure</topic><topic>Dehydrogenation</topic><topic>Energy</topic><topic>High temperature</topic><topic>Hydrogen production</topic><topic>Hydrolysis</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoparticles</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Ruthenium</topic><topic>Ultrafines</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Yue-Wei</creatorcontrib><creatorcontrib>Yang, Guang</creatorcontrib><creatorcontrib>Xu, Xi-Xi</creatorcontrib><creatorcontrib>Liu, Yan-Yan</creatorcontrib><creatorcontrib>Kang, Nai-Xin</creatorcontrib><creatorcontrib>Li, Bao-Jun</creatorcontrib><creatorcontrib>Wang, Yong-Zhao</creatorcontrib><creatorcontrib>Zhao, Yong-Xiang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Yue-Wei</au><au>Yang, Guang</au><au>Xu, Xi-Xi</au><au>Liu, Yan-Yan</au><au>Kang, Nai-Xin</au><au>Li, Bao-Jun</au><au>Wang, Yong-Zhao</au><au>Zhao, Yong-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>2324</spage><epage>2334</epage><pages>2324-2334</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>As a promising route to hydrogen production, hydrolysis of ammonia borane (AB) aqueous solution requires efficient and stable catalysts. In this paper, a carbon-coated zeolite is prepared by high temperature calcination using glucose as carbon source. Ultrafine Ru nanoparticles are anchored on the composite support with core–shell structure using a simple in situ reduction method. The prepared catalyst expressed outstanding catalytic activity in the hydrolytic dehydrogenation of AB. The effects of support prepared by different synthesis parameters on the performance of catalyst are investigated. The Ru/S-1@C(RSC-2) catalyst exhibited the highest catalytic activity for hydrolytic dehydrogenation of AB with a turnover frequency of 892 min
−1
at room temperature. This performance is superior to that of many catalysts previously reported. The excellent catalytic activity is attributed to the carbon layer on catalyst surface effectively limiting the aggregation of Ru nanoparticles in the hydrolysis reaction. The zeolite also plays a role in pre-activation of water. This pre-activation accelerates the rate-limiting step of water dissociation in the reaction. The kinetic studies for determining the activation energy (
E
a
= 36.8 kJ⋅mol
−1
) were based on reaction temperature. The effects of catalyst concentration, AB concentration and NaOH concentration on hydrolysis rate of AB were further investigated. The high-performance catalysts and the preparation method in this study have wide application prospects in the field of clean energy.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-022-02246-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8325-3772</orcidid><orcidid>https://orcid.org/0000-0001-9389-4784</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2023-07, Vol.42 (7), p.2324-2334 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2828889182 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Ammonia Aqueous solutions Biomaterials Carbon Catalysis Catalysts Catalytic activity Chemical synthesis Chemistry and Materials Science Clean energy Constraining Core-shell structure Dehydrogenation Energy High temperature Hydrogen production Hydrolysis Materials Engineering Materials Science Metallic Materials Nanoparticles Nanoscale Science and Technology Original Article Physical Chemistry Room temperature Ruthenium Ultrafines Zeolites |
title | Ultrafine Ru nanoparticles anchored on core–shell structured zeolite-carbon for efficient catalysis of hydrogen generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A34%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafine%20Ru%20nanoparticles%20anchored%20on%20core%E2%80%93shell%20structured%20zeolite-carbon%20for%20efficient%20catalysis%20of%20hydrogen%20generation&rft.jtitle=Rare%20metals&rft.au=Wei,%20Yue-Wei&rft.date=2023-07-01&rft.volume=42&rft.issue=7&rft.spage=2324&rft.epage=2334&rft.pages=2324-2334&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-022-02246-0&rft_dat=%3Cproquest_cross%3E2828889182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828889182&rft_id=info:pmid/&rfr_iscdi=true |