3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface

Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2023-07, Vol.37 (7), p.n/a
Hauptverfasser: Sun, Ting, Gao, Ping, Zhang, Shixian, Wu, Zhiren, Liu, Jun, Rong, Xinshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Applied organometallic chemistry
container_volume 37
creator Sun, Ting
Gao, Ping
Zhang, Shixian
Wu, Zhiren
Liu, Jun
Rong, Xinshan
description Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers. Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.
doi_str_mv 10.1002/aoc.7117
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828635699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828635699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6CjxBw46aapE3TLIfxFwZmo-tyJ02cyExTk1TtzicQn9EnMXXcChfuhfudc-AgdErJBSWEXYJTF4JSsYcmlEiZEZHLfTQhrKwyVhJ-iI5CeCaEyJIWE_SZX-HOedcHrMCvXItbG71tNFZu27lgo26wex-edItfQUGrhu-PL9s2vUqPtG2_Tf9RYJzHa_u0xt3aRacgwmaIVv0aulFv7DtEmyLSxLVO6qi9AWVhg0M_XvoYHRjYBH3yt6fo8eb6YX6XLZa39_PZIlM5EyKDQkpmuCx4xfWK5nlutAAiOBCqGlYqbnRByhKgIaQyYiW5NMB4U1SmEQXkU3S28-28e-l1iPWz632bImtWsarMeSllos53lPIuBK9N3Xm7BT_UlNRj23Vqux7bTmi2Q9_sRg__cvVsOf_lfwDUu4SX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828635699</pqid></control><display><type>article</type><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</creator><creatorcontrib>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</creatorcontrib><description>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers. Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7117</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>3DPCN ; Carbon ; Carbon nitride ; Catalytic converters ; Chemistry ; Clean energy ; Current carriers ; Diffuse reflectance spectroscopy ; Electrochemical impedance spectroscopy ; Electromagnetic absorption ; Electron microscopy ; Electron paramagnetic resonance ; Energy bands ; Indium oxides ; Microscopy ; N2 photofixation ; Nitrogen ; Nitrogenation ; Oxygen ; oxygen vacancy ; Photocatalysis ; Photoelectrons ; Photoluminescence ; Separation ; Solar energy conversion ; Spectrum analysis ; Surface structure ; Three dimensional composites ; Z‐scheme</subject><ispartof>Applied organometallic chemistry, 2023-07, Vol.37 (7), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</citedby><cites>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</cites><orcidid>0009-0009-9790-4842 ; 0009-0001-5835-5256 ; 0000-0003-4219-2189 ; 0000-0001-8256-9142 ; 0000-0002-6837-1807 ; 0000-0003-3423-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.7117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.7117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sun, Ting</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Wu, Zhiren</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Rong, Xinshan</creatorcontrib><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><title>Applied organometallic chemistry</title><description>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers. Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</description><subject>3DPCN</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Clean energy</subject><subject>Current carriers</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electromagnetic absorption</subject><subject>Electron microscopy</subject><subject>Electron paramagnetic resonance</subject><subject>Energy bands</subject><subject>Indium oxides</subject><subject>Microscopy</subject><subject>N2 photofixation</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>oxygen vacancy</subject><subject>Photocatalysis</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Separation</subject><subject>Solar energy conversion</subject><subject>Spectrum analysis</subject><subject>Surface structure</subject><subject>Three dimensional composites</subject><subject>Z‐scheme</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6CjxBw46aapE3TLIfxFwZmo-tyJ02cyExTk1TtzicQn9EnMXXcChfuhfudc-AgdErJBSWEXYJTF4JSsYcmlEiZEZHLfTQhrKwyVhJ-iI5CeCaEyJIWE_SZX-HOedcHrMCvXItbG71tNFZu27lgo26wex-edItfQUGrhu-PL9s2vUqPtG2_Tf9RYJzHa_u0xt3aRacgwmaIVv0aulFv7DtEmyLSxLVO6qi9AWVhg0M_XvoYHRjYBH3yt6fo8eb6YX6XLZa39_PZIlM5EyKDQkpmuCx4xfWK5nlutAAiOBCqGlYqbnRByhKgIaQyYiW5NMB4U1SmEQXkU3S28-28e-l1iPWz632bImtWsarMeSllos53lPIuBK9N3Xm7BT_UlNRj23Vqux7bTmi2Q9_sRg__cvVsOf_lfwDUu4SX</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Sun, Ting</creator><creator>Gao, Ping</creator><creator>Zhang, Shixian</creator><creator>Wu, Zhiren</creator><creator>Liu, Jun</creator><creator>Rong, Xinshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-9790-4842</orcidid><orcidid>https://orcid.org/0009-0001-5835-5256</orcidid><orcidid>https://orcid.org/0000-0003-4219-2189</orcidid><orcidid>https://orcid.org/0000-0001-8256-9142</orcidid><orcidid>https://orcid.org/0000-0002-6837-1807</orcidid><orcidid>https://orcid.org/0000-0003-3423-7287</orcidid></search><sort><creationdate>202307</creationdate><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><author>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3DPCN</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Clean energy</topic><topic>Current carriers</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electromagnetic absorption</topic><topic>Electron microscopy</topic><topic>Electron paramagnetic resonance</topic><topic>Energy bands</topic><topic>Indium oxides</topic><topic>Microscopy</topic><topic>N2 photofixation</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>oxygen vacancy</topic><topic>Photocatalysis</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Separation</topic><topic>Solar energy conversion</topic><topic>Spectrum analysis</topic><topic>Surface structure</topic><topic>Three dimensional composites</topic><topic>Z‐scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ting</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Wu, Zhiren</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Rong, Xinshan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ting</au><au>Gao, Ping</au><au>Zhang, Shixian</au><au>Wu, Zhiren</au><au>Liu, Jun</au><au>Rong, Xinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2023-07</date><risdate>2023</risdate><volume>37</volume><issue>7</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers. Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7117</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-9790-4842</orcidid><orcidid>https://orcid.org/0009-0001-5835-5256</orcidid><orcidid>https://orcid.org/0000-0003-4219-2189</orcidid><orcidid>https://orcid.org/0000-0001-8256-9142</orcidid><orcidid>https://orcid.org/0000-0002-6837-1807</orcidid><orcidid>https://orcid.org/0000-0003-3423-7287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-2605
ispartof Applied organometallic chemistry, 2023-07, Vol.37 (7), p.n/a
issn 0268-2605
1099-0739
language eng
recordid cdi_proquest_journals_2828635699
source Wiley Online Library Journals Frontfile Complete
subjects 3DPCN
Carbon
Carbon nitride
Catalytic converters
Chemistry
Clean energy
Current carriers
Diffuse reflectance spectroscopy
Electrochemical impedance spectroscopy
Electromagnetic absorption
Electron microscopy
Electron paramagnetic resonance
Energy bands
Indium oxides
Microscopy
N2 photofixation
Nitrogen
Nitrogenation
Oxygen
oxygen vacancy
Photocatalysis
Photoelectrons
Photoluminescence
Separation
Solar energy conversion
Spectrum analysis
Surface structure
Three dimensional composites
Z‐scheme
title 3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20porous%20carbon%20nitride%20composited%20oxygen%20vacancy%E2%80%90induced%20indium%20oxide%20for%20high%20photocatalytic%20nitrogen%20fixation%20on%20the%20interfacial%20surface&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Sun,%20Ting&rft.date=2023-07&rft.volume=37&rft.issue=7&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7117&rft_dat=%3Cproquest_cross%3E2828635699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828635699&rft_id=info:pmid/&rfr_iscdi=true