3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface
Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced...
Gespeichert in:
Veröffentlicht in: | Applied organometallic chemistry 2023-07, Vol.37 (7), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied organometallic chemistry |
container_volume | 37 |
creator | Sun, Ting Gao, Ping Zhang, Shixian Wu, Zhiren Liu, Jun Rong, Xinshan |
description | Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers.
Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient. |
doi_str_mv | 10.1002/aoc.7117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828635699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828635699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI6CjxBw46aapE3TLIfxFwZmo-tyJ02cyExTk1TtzicQn9EnMXXcChfuhfudc-AgdErJBSWEXYJTF4JSsYcmlEiZEZHLfTQhrKwyVhJ-iI5CeCaEyJIWE_SZX-HOedcHrMCvXItbG71tNFZu27lgo26wex-edItfQUGrhu-PL9s2vUqPtG2_Tf9RYJzHa_u0xt3aRacgwmaIVv0aulFv7DtEmyLSxLVO6qi9AWVhg0M_XvoYHRjYBH3yt6fo8eb6YX6XLZa39_PZIlM5EyKDQkpmuCx4xfWK5nlutAAiOBCqGlYqbnRByhKgIaQyYiW5NMB4U1SmEQXkU3S28-28e-l1iPWz632bImtWsarMeSllos53lPIuBK9N3Xm7BT_UlNRj23Vqux7bTmi2Q9_sRg__cvVsOf_lfwDUu4SX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828635699</pqid></control><display><type>article</type><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</creator><creatorcontrib>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</creatorcontrib><description>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers.
Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.7117</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>3DPCN ; Carbon ; Carbon nitride ; Catalytic converters ; Chemistry ; Clean energy ; Current carriers ; Diffuse reflectance spectroscopy ; Electrochemical impedance spectroscopy ; Electromagnetic absorption ; Electron microscopy ; Electron paramagnetic resonance ; Energy bands ; Indium oxides ; Microscopy ; N2 photofixation ; Nitrogen ; Nitrogenation ; Oxygen ; oxygen vacancy ; Photocatalysis ; Photoelectrons ; Photoluminescence ; Separation ; Solar energy conversion ; Spectrum analysis ; Surface structure ; Three dimensional composites ; Z‐scheme</subject><ispartof>Applied organometallic chemistry, 2023-07, Vol.37 (7), p.n/a</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</citedby><cites>FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</cites><orcidid>0009-0009-9790-4842 ; 0009-0001-5835-5256 ; 0000-0003-4219-2189 ; 0000-0001-8256-9142 ; 0000-0002-6837-1807 ; 0000-0003-3423-7287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.7117$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.7117$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sun, Ting</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Wu, Zhiren</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Rong, Xinshan</creatorcontrib><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><title>Applied organometallic chemistry</title><description>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers.
Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</description><subject>3DPCN</subject><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalytic converters</subject><subject>Chemistry</subject><subject>Clean energy</subject><subject>Current carriers</subject><subject>Diffuse reflectance spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electromagnetic absorption</subject><subject>Electron microscopy</subject><subject>Electron paramagnetic resonance</subject><subject>Energy bands</subject><subject>Indium oxides</subject><subject>Microscopy</subject><subject>N2 photofixation</subject><subject>Nitrogen</subject><subject>Nitrogenation</subject><subject>Oxygen</subject><subject>oxygen vacancy</subject><subject>Photocatalysis</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Separation</subject><subject>Solar energy conversion</subject><subject>Spectrum analysis</subject><subject>Surface structure</subject><subject>Three dimensional composites</subject><subject>Z‐scheme</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI6CjxBw46aapE3TLIfxFwZmo-tyJ02cyExTk1TtzicQn9EnMXXcChfuhfudc-AgdErJBSWEXYJTF4JSsYcmlEiZEZHLfTQhrKwyVhJ-iI5CeCaEyJIWE_SZX-HOedcHrMCvXItbG71tNFZu27lgo26wex-edItfQUGrhu-PL9s2vUqPtG2_Tf9RYJzHa_u0xt3aRacgwmaIVv0aulFv7DtEmyLSxLVO6qi9AWVhg0M_XvoYHRjYBH3yt6fo8eb6YX6XLZa39_PZIlM5EyKDQkpmuCx4xfWK5nlutAAiOBCqGlYqbnRByhKgIaQyYiW5NMB4U1SmEQXkU3S28-28e-l1iPWz632bImtWsarMeSllos53lPIuBK9N3Xm7BT_UlNRj23Vqux7bTmi2Q9_sRg__cvVsOf_lfwDUu4SX</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Sun, Ting</creator><creator>Gao, Ping</creator><creator>Zhang, Shixian</creator><creator>Wu, Zhiren</creator><creator>Liu, Jun</creator><creator>Rong, Xinshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-9790-4842</orcidid><orcidid>https://orcid.org/0009-0001-5835-5256</orcidid><orcidid>https://orcid.org/0000-0003-4219-2189</orcidid><orcidid>https://orcid.org/0000-0001-8256-9142</orcidid><orcidid>https://orcid.org/0000-0002-6837-1807</orcidid><orcidid>https://orcid.org/0000-0003-3423-7287</orcidid></search><sort><creationdate>202307</creationdate><title>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</title><author>Sun, Ting ; Gao, Ping ; Zhang, Shixian ; Wu, Zhiren ; Liu, Jun ; Rong, Xinshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3277-a4992f594585eb1333fe7a075a01cd26c5fe4066aad008f7b959fa25d48fd74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3DPCN</topic><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalytic converters</topic><topic>Chemistry</topic><topic>Clean energy</topic><topic>Current carriers</topic><topic>Diffuse reflectance spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electromagnetic absorption</topic><topic>Electron microscopy</topic><topic>Electron paramagnetic resonance</topic><topic>Energy bands</topic><topic>Indium oxides</topic><topic>Microscopy</topic><topic>N2 photofixation</topic><topic>Nitrogen</topic><topic>Nitrogenation</topic><topic>Oxygen</topic><topic>oxygen vacancy</topic><topic>Photocatalysis</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Separation</topic><topic>Solar energy conversion</topic><topic>Spectrum analysis</topic><topic>Surface structure</topic><topic>Three dimensional composites</topic><topic>Z‐scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ting</creatorcontrib><creatorcontrib>Gao, Ping</creatorcontrib><creatorcontrib>Zhang, Shixian</creatorcontrib><creatorcontrib>Wu, Zhiren</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Rong, Xinshan</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ting</au><au>Gao, Ping</au><au>Zhang, Shixian</au><au>Wu, Zhiren</au><au>Liu, Jun</au><au>Rong, Xinshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2023-07</date><risdate>2023</risdate><volume>37</volume><issue>7</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>Semiconductor photocatalysis can utilize solar energy for clean energy conversion, but the catalytic efficiency is often unsatisfactory due to limited photo response and efficient separation of photogenerated carriers. In this work, 3D porous carbon nitride (3DPCN) composited oxygen vacancy‐induced indium oxide (3DPCN/VO‐In2O3) was successfully prepared and analyzed by some characterization methods. Meanwhile, the performance of photocatalytic nitrogen fixation was further investigated. X‐ray photoelectron spectroscopy and X‐Ray diffraction (XRD) confirmed the successful preparation of the composites and revealed the electron flow direction; scanning electron microscopy (SEM) and transmission electron microscopy showed the surface structure of the composites; diffuse reflectance spectroscopy and temperature programmed desorption (TPD) revealed the energy band position and adsorption mechanism; electron paramagnetic resonance (EPR) characterization confirms the successful construction of oxygen vacancies; and electrochemical impedance spectroscopy, photoluminescence, and other photochemical characterization results showed that 3DPCN/VO‐In2O3 band gap is narrower and more effective in capturing light than other materials, improving the photocatalytic nitrogen fixation ability. The test results show that the nitrogen fixation capacity of 3DPCN/VO‐In2O3 can reach a maximum value of 156 within 2 h. This result demonstrates that the modification of carbon nitride improves its nitrogen fixation effect, and the introduction of oxygen vacancy‐induced In2O3 improves the light absorption performance and is advantageous to the separation of photogenerated charge carriers.
Z‐scheme 3D porous carbon nitride/oxygen vacancy indium oxide (3DPCN/Vo‐In2O3) photocatalyst was prepared by supramolecular assembly and solvothermal method for nitrogen fixation process, which makes the process more environmentally friendly and efficient.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.7117</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0009-9790-4842</orcidid><orcidid>https://orcid.org/0009-0001-5835-5256</orcidid><orcidid>https://orcid.org/0000-0003-4219-2189</orcidid><orcidid>https://orcid.org/0000-0001-8256-9142</orcidid><orcidid>https://orcid.org/0000-0002-6837-1807</orcidid><orcidid>https://orcid.org/0000-0003-3423-7287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2605 |
ispartof | Applied organometallic chemistry, 2023-07, Vol.37 (7), p.n/a |
issn | 0268-2605 1099-0739 |
language | eng |
recordid | cdi_proquest_journals_2828635699 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3DPCN Carbon Carbon nitride Catalytic converters Chemistry Clean energy Current carriers Diffuse reflectance spectroscopy Electrochemical impedance spectroscopy Electromagnetic absorption Electron microscopy Electron paramagnetic resonance Energy bands Indium oxides Microscopy N2 photofixation Nitrogen Nitrogenation Oxygen oxygen vacancy Photocatalysis Photoelectrons Photoluminescence Separation Solar energy conversion Spectrum analysis Surface structure Three dimensional composites Z‐scheme |
title | 3D porous carbon nitride composited oxygen vacancy‐induced indium oxide for high photocatalytic nitrogen fixation on the interfacial surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20porous%20carbon%20nitride%20composited%20oxygen%20vacancy%E2%80%90induced%20indium%20oxide%20for%20high%20photocatalytic%20nitrogen%20fixation%20on%20the%20interfacial%20surface&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Sun,%20Ting&rft.date=2023-07&rft.volume=37&rft.issue=7&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.7117&rft_dat=%3Cproquest_cross%3E2828635699%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828635699&rft_id=info:pmid/&rfr_iscdi=true |