Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron
Multi-parameter study on the subsonic equilibrium air plasma flows in the cylindrical discharge channel of an induction RF-plasmatron IPG-3 with the maximum operating power of 1 MW is presented. Simulations are carried out by numerical solution of full Navier–Stokes equations coupled with a two-dime...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2023-07, Vol.35 (4), p.1689-1701 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1701 |
---|---|
container_issue | 4 |
container_start_page | 1689 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 35 |
creator | Vasil’evskii, S. A. Kolesnikov, A. F. Bryzgalov, A. I. Yakush, S. E. |
description | Multi-parameter study on the subsonic equilibrium air plasma flows in the cylindrical discharge channel of an induction RF-plasmatron IPG-3 with the maximum operating power of 1 MW is presented. Simulations are carried out by numerical solution of full Navier–Stokes equations coupled with a two-dimensional equation for high-frequency electric field; the discretization of the equations is performed on a staggered Cartesian mesh. An effective method for calculation of the transport coefficients for ionized multi-component air (including the plasma conductivity) in the temperature range 300–15000 K is applied, with the higher-order approximations by the Sonine polynomial in the Chapman–Enskog method. Simulation results are presented, including the flow fields, electric field, and thermodynamic parameters of the air plasma in the discharge channel of a high-power induction plasmatron. The results obtained reveal for the first time the structure and parameters of a plasma torch in a large-diameter (200 mm) discharge channel at powers up to 300 kW, providing the axial specific enthalpies at the channel outlet as high as 68 MJ/kg. |
doi_str_mv | 10.1007/s00161-023-01192-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2828539375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754308872</galeid><sourcerecordid>A754308872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-83edc928a37c41ea3a199864b4af4a9e724d2865dd6a0f5542b5e86ed8558cc13</originalsourceid><addsrcrecordid>eNp9kUtLLDEQhYMoOD7-gKuA62gene5kKeIL5N7NvetQk66eiXR3xqQb8d-bsRV3UosDxfmqDhxCLgS_Epw315lzUQvGpWJcCCuZOCArUSnJuNX2kKy4VZoJ0ehjcpLzCy-Q1WpFNn_mAVPw0NMchrmHKcSRxo7i6xz6sE5hHiiERHc95AFo18c3GkY6bbFIO_tPv9_CsMa054Buw2bLdvENv6EpxfGMHHXQZzz_0lPy__7u3-0je_778HR788y80mZiRmHrrTSgGl8JBAXCWlNX6wq6Ciw2smqlqXXb1sA7rSu51mhqbI3WxnuhTsnlcneX4uuMeXIvcU5jeemkkUYrqxpdXFeLawM9ujB2cUrgy7Q4BB9H7ELZ3zS6UtyYRhZALoBPMeeEndulMEB6d4K7fQNuacCVBtxnA26fRS1QLuZxg-knyy_UB3TSiYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828539375</pqid></control><display><type>article</type><title>Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron</title><source>SpringerLink_现刊</source><creator>Vasil’evskii, S. A. ; Kolesnikov, A. F. ; Bryzgalov, A. I. ; Yakush, S. E.</creator><creatorcontrib>Vasil’evskii, S. A. ; Kolesnikov, A. F. ; Bryzgalov, A. I. ; Yakush, S. E.</creatorcontrib><description>Multi-parameter study on the subsonic equilibrium air plasma flows in the cylindrical discharge channel of an induction RF-plasmatron IPG-3 with the maximum operating power of 1 MW is presented. Simulations are carried out by numerical solution of full Navier–Stokes equations coupled with a two-dimensional equation for high-frequency electric field; the discretization of the equations is performed on a staggered Cartesian mesh. An effective method for calculation of the transport coefficients for ionized multi-component air (including the plasma conductivity) in the temperature range 300–15000 K is applied, with the higher-order approximations by the Sonine polynomial in the Chapman–Enskog method. Simulation results are presented, including the flow fields, electric field, and thermodynamic parameters of the air plasma in the discharge channel of a high-power induction plasmatron. The results obtained reveal for the first time the structure and parameters of a plasma torch in a large-diameter (200 mm) discharge channel at powers up to 300 kW, providing the axial specific enthalpies at the channel outlet as high as 68 MJ/kg.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-023-01192-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air flow ; Air plasma ; Classical and Continuum Physics ; Cylindrical plasmas ; Diameters ; Discharge ; Electric fields ; Engineering Thermodynamics ; Enthalpy ; Finite element method ; Heat and Mass Transfer ; Numerical analysis ; Original Article ; Parameters ; Physics ; Physics and Astronomy ; Plasma ; Plasma conductivity ; Plasma physics ; Polynomials ; Simulation ; Simulation methods ; Structural Materials ; Theoretical and Applied Mechanics ; Transport properties</subject><ispartof>Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1689-1701</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-83edc928a37c41ea3a199864b4af4a9e724d2865dd6a0f5542b5e86ed8558cc13</citedby><cites>FETCH-LOGICAL-c358t-83edc928a37c41ea3a199864b4af4a9e724d2865dd6a0f5542b5e86ed8558cc13</cites><orcidid>0000-0002-7814-5491 ; 0000-0002-5715-1649 ; 0000-0002-3443-7863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-023-01192-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-023-01192-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Vasil’evskii, S. A.</creatorcontrib><creatorcontrib>Kolesnikov, A. F.</creatorcontrib><creatorcontrib>Bryzgalov, A. I.</creatorcontrib><creatorcontrib>Yakush, S. E.</creatorcontrib><title>Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>Multi-parameter study on the subsonic equilibrium air plasma flows in the cylindrical discharge channel of an induction RF-plasmatron IPG-3 with the maximum operating power of 1 MW is presented. Simulations are carried out by numerical solution of full Navier–Stokes equations coupled with a two-dimensional equation for high-frequency electric field; the discretization of the equations is performed on a staggered Cartesian mesh. An effective method for calculation of the transport coefficients for ionized multi-component air (including the plasma conductivity) in the temperature range 300–15000 K is applied, with the higher-order approximations by the Sonine polynomial in the Chapman–Enskog method. Simulation results are presented, including the flow fields, electric field, and thermodynamic parameters of the air plasma in the discharge channel of a high-power induction plasmatron. The results obtained reveal for the first time the structure and parameters of a plasma torch in a large-diameter (200 mm) discharge channel at powers up to 300 kW, providing the axial specific enthalpies at the channel outlet as high as 68 MJ/kg.</description><subject>Air flow</subject><subject>Air plasma</subject><subject>Classical and Continuum Physics</subject><subject>Cylindrical plasmas</subject><subject>Diameters</subject><subject>Discharge</subject><subject>Electric fields</subject><subject>Engineering Thermodynamics</subject><subject>Enthalpy</subject><subject>Finite element method</subject><subject>Heat and Mass Transfer</subject><subject>Numerical analysis</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma</subject><subject>Plasma conductivity</subject><subject>Plasma physics</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Transport properties</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLLDEQhYMoOD7-gKuA62gene5kKeIL5N7NvetQk66eiXR3xqQb8d-bsRV3UosDxfmqDhxCLgS_Epw315lzUQvGpWJcCCuZOCArUSnJuNX2kKy4VZoJ0ehjcpLzCy-Q1WpFNn_mAVPw0NMchrmHKcSRxo7i6xz6sE5hHiiERHc95AFo18c3GkY6bbFIO_tPv9_CsMa054Buw2bLdvENv6EpxfGMHHXQZzz_0lPy__7u3-0je_778HR788y80mZiRmHrrTSgGl8JBAXCWlNX6wq6Ciw2smqlqXXb1sA7rSu51mhqbI3WxnuhTsnlcneX4uuMeXIvcU5jeemkkUYrqxpdXFeLawM9ujB2cUrgy7Q4BB9H7ELZ3zS6UtyYRhZALoBPMeeEndulMEB6d4K7fQNuacCVBtxnA26fRS1QLuZxg-knyy_UB3TSiYs</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Vasil’evskii, S. A.</creator><creator>Kolesnikov, A. F.</creator><creator>Bryzgalov, A. I.</creator><creator>Yakush, S. E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7814-5491</orcidid><orcidid>https://orcid.org/0000-0002-5715-1649</orcidid><orcidid>https://orcid.org/0000-0002-3443-7863</orcidid></search><sort><creationdate>20230701</creationdate><title>Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron</title><author>Vasil’evskii, S. A. ; Kolesnikov, A. F. ; Bryzgalov, A. I. ; Yakush, S. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-83edc928a37c41ea3a199864b4af4a9e724d2865dd6a0f5542b5e86ed8558cc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Air plasma</topic><topic>Classical and Continuum Physics</topic><topic>Cylindrical plasmas</topic><topic>Diameters</topic><topic>Discharge</topic><topic>Electric fields</topic><topic>Engineering Thermodynamics</topic><topic>Enthalpy</topic><topic>Finite element method</topic><topic>Heat and Mass Transfer</topic><topic>Numerical analysis</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma</topic><topic>Plasma conductivity</topic><topic>Plasma physics</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’evskii, S. A.</creatorcontrib><creatorcontrib>Kolesnikov, A. F.</creatorcontrib><creatorcontrib>Bryzgalov, A. I.</creatorcontrib><creatorcontrib>Yakush, S. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’evskii, S. A.</au><au>Kolesnikov, A. F.</au><au>Bryzgalov, A. I.</au><au>Yakush, S. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1689</spage><epage>1701</epage><pages>1689-1701</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>Multi-parameter study on the subsonic equilibrium air plasma flows in the cylindrical discharge channel of an induction RF-plasmatron IPG-3 with the maximum operating power of 1 MW is presented. Simulations are carried out by numerical solution of full Navier–Stokes equations coupled with a two-dimensional equation for high-frequency electric field; the discretization of the equations is performed on a staggered Cartesian mesh. An effective method for calculation of the transport coefficients for ionized multi-component air (including the plasma conductivity) in the temperature range 300–15000 K is applied, with the higher-order approximations by the Sonine polynomial in the Chapman–Enskog method. Simulation results are presented, including the flow fields, electric field, and thermodynamic parameters of the air plasma in the discharge channel of a high-power induction plasmatron. The results obtained reveal for the first time the structure and parameters of a plasma torch in a large-diameter (200 mm) discharge channel at powers up to 300 kW, providing the axial specific enthalpies at the channel outlet as high as 68 MJ/kg.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-023-01192-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7814-5491</orcidid><orcidid>https://orcid.org/0000-0002-5715-1649</orcidid><orcidid>https://orcid.org/0000-0002-3443-7863</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1689-1701 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2828539375 |
source | SpringerLink_现刊 |
subjects | Air flow Air plasma Classical and Continuum Physics Cylindrical plasmas Diameters Discharge Electric fields Engineering Thermodynamics Enthalpy Finite element method Heat and Mass Transfer Numerical analysis Original Article Parameters Physics Physics and Astronomy Plasma Plasma conductivity Plasma physics Polynomials Simulation Simulation methods Structural Materials Theoretical and Applied Mechanics Transport properties |
title | Numerical simulation of equilibrium air plasma flow in the induction chamber of a high-power plasmatron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A54%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20equilibrium%20air%20plasma%20flow%20in%20the%20induction%20chamber%20of%20a%20high-power%20plasmatron&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Vasil%E2%80%99evskii,%20S.%20A.&rft.date=2023-07-01&rft.volume=35&rft.issue=4&rft.spage=1689&rft.epage=1701&rft.pages=1689-1701&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-023-01192-1&rft_dat=%3Cgale_proqu%3EA754308872%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828539375&rft_id=info:pmid/&rft_galeid=A754308872&rfr_iscdi=true |