Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra
Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed speci...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2023-07, Vol.35 (4), p.1309-1323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1323 |
---|---|
container_issue | 4 |
container_start_page | 1309 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 35 |
creator | Belyaev, Alexander K. Chevrychkina, Anastasiia A. Polyanskiy, Vladimir A. Yakovlev, Yuriy A. |
description | Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed specific inhomogeneity in the distribution of hydrogen concentrations significantly affects the shape of thermal desorption spectra and in turn the results of their interpretation based on the Choo–Lee plot and the Kissinger formula. Large errors are possible in the binding energies determined by means of the thermal desorption spectra, provided that the skin layer is formed artificially when the samples are charged with hydrogen. It is shown that the standard description of thermal desorption of hydrogen based upon the one-dimensional model leads to errors. The three-dimensional formulation of problem of hydrogen diffusion in cylindrical sample results in a broken line in the Choo–Lee plot rather than a straight line obtained in the framework of one-dimensional formulation. Comparison of experimental data with the 3D simulation data convinces that effect of the skin layer on the thermal desorption spectra is associated only with the diffusion of hydrogen at the sites of the crystal lattice in the McNab–Foster model. |
doi_str_mv | 10.1007/s00161-022-01130-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2828539337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A754308878</galeid><sourcerecordid>A754308878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e52368f06145abbfd829e1a7e4271be6c496480a19c190adf828a306445b49733</originalsourceid><addsrcrecordid>eNp9kc-K3SAUxqW00NtpX6AroetMNWqMy2H6F4aZTbsWY465TqOmmru4z9MXrbkpDIVSRPR4vp_fgQ-ht5RcU0Lk-0II7WhD2rYhlDLSyGfoQDmrpRLqOToQxURDqRQv0atSHkmFlGAH9OseLJTi1zNODrMPOKQRZh8n7FLGxYfTbFaf4tb1YTF23W7lh48YnIO9PJ7HnCaI2B5Nnja4AusR8ODjuJUQIU8XhzWbpeARVsjBRxixyylctHXnYObaKykvF8-yVINsXqMXzswF3vw5r9D3Tx-_3X5p7h4-f729uWssY3JtQLSs6x3pKBdmGNzYtwqokcBbSQfoLFcd74mhylJFzOj6tjeMdJyLgSvJ2BV6t_-75PTzBGXVj-mUY7XUbdUKpqrPk2oyM2gfXaoj2uCL1TdScEb6XvZVdf0PVV0jBG9TBOfr-19AuwM2p1IyOL1kH0w-a0r0lrHeM9Y1Y33JWG-zsB0qVRwnyE8T_4f6DQSSqiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828539337</pqid></control><display><type>article</type><title>Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra</title><source>SpringerNature Journals</source><creator>Belyaev, Alexander K. ; Chevrychkina, Anastasiia A. ; Polyanskiy, Vladimir A. ; Yakovlev, Yuriy A.</creator><creatorcontrib>Belyaev, Alexander K. ; Chevrychkina, Anastasiia A. ; Polyanskiy, Vladimir A. ; Yakovlev, Yuriy A.</creatorcontrib><description>Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed specific inhomogeneity in the distribution of hydrogen concentrations significantly affects the shape of thermal desorption spectra and in turn the results of their interpretation based on the Choo–Lee plot and the Kissinger formula. Large errors are possible in the binding energies determined by means of the thermal desorption spectra, provided that the skin layer is formed artificially when the samples are charged with hydrogen. It is shown that the standard description of thermal desorption of hydrogen based upon the one-dimensional model leads to errors. The three-dimensional formulation of problem of hydrogen diffusion in cylindrical sample results in a broken line in the Choo–Lee plot rather than a straight line obtained in the framework of one-dimensional formulation. Comparison of experimental data with the 3D simulation data convinces that effect of the skin layer on the thermal desorption spectra is associated only with the diffusion of hydrogen at the sites of the crystal lattice in the McNab–Foster model.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-022-01130-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding energy ; Classical and Continuum Physics ; Crystal lattices ; Desorption ; Diffusion layers ; Engineering Thermodynamics ; Errors ; Experimental data ; Force and energy ; Heat and Mass Transfer ; Hydrogen ; Hydrogen charging ; Inhomogeneity ; One dimensional models ; Original Article ; Physics ; Physics and Astronomy ; Skin ; Skin effect ; Spectra ; Straight lines ; Structural Materials ; Theoretical and Applied Mechanics ; Three dimensional models</subject><ispartof>Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1309-1323</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c337t-e52368f06145abbfd829e1a7e4271be6c496480a19c190adf828a306445b49733</cites><orcidid>0000-0002-1199-1028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-022-01130-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-022-01130-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Belyaev, Alexander K.</creatorcontrib><creatorcontrib>Chevrychkina, Anastasiia A.</creatorcontrib><creatorcontrib>Polyanskiy, Vladimir A.</creatorcontrib><creatorcontrib>Yakovlev, Yuriy A.</creatorcontrib><title>Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed specific inhomogeneity in the distribution of hydrogen concentrations significantly affects the shape of thermal desorption spectra and in turn the results of their interpretation based on the Choo–Lee plot and the Kissinger formula. Large errors are possible in the binding energies determined by means of the thermal desorption spectra, provided that the skin layer is formed artificially when the samples are charged with hydrogen. It is shown that the standard description of thermal desorption of hydrogen based upon the one-dimensional model leads to errors. The three-dimensional formulation of problem of hydrogen diffusion in cylindrical sample results in a broken line in the Choo–Lee plot rather than a straight line obtained in the framework of one-dimensional formulation. Comparison of experimental data with the 3D simulation data convinces that effect of the skin layer on the thermal desorption spectra is associated only with the diffusion of hydrogen at the sites of the crystal lattice in the McNab–Foster model.</description><subject>Binding energy</subject><subject>Classical and Continuum Physics</subject><subject>Crystal lattices</subject><subject>Desorption</subject><subject>Diffusion layers</subject><subject>Engineering Thermodynamics</subject><subject>Errors</subject><subject>Experimental data</subject><subject>Force and energy</subject><subject>Heat and Mass Transfer</subject><subject>Hydrogen</subject><subject>Hydrogen charging</subject><subject>Inhomogeneity</subject><subject>One dimensional models</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Skin</subject><subject>Skin effect</subject><subject>Spectra</subject><subject>Straight lines</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Three dimensional models</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc-K3SAUxqW00NtpX6AroetMNWqMy2H6F4aZTbsWY465TqOmmru4z9MXrbkpDIVSRPR4vp_fgQ-ht5RcU0Lk-0II7WhD2rYhlDLSyGfoQDmrpRLqOToQxURDqRQv0atSHkmFlGAH9OseLJTi1zNODrMPOKQRZh8n7FLGxYfTbFaf4tb1YTF23W7lh48YnIO9PJ7HnCaI2B5Nnja4AusR8ODjuJUQIU8XhzWbpeARVsjBRxixyylctHXnYObaKykvF8-yVINsXqMXzswF3vw5r9D3Tx-_3X5p7h4-f729uWssY3JtQLSs6x3pKBdmGNzYtwqokcBbSQfoLFcd74mhylJFzOj6tjeMdJyLgSvJ2BV6t_-75PTzBGXVj-mUY7XUbdUKpqrPk2oyM2gfXaoj2uCL1TdScEb6XvZVdf0PVV0jBG9TBOfr-19AuwM2p1IyOL1kH0w-a0r0lrHeM9Y1Y33JWG-zsB0qVRwnyE8T_4f6DQSSqiQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Belyaev, Alexander K.</creator><creator>Chevrychkina, Anastasiia A.</creator><creator>Polyanskiy, Vladimir A.</creator><creator>Yakovlev, Yuriy A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1199-1028</orcidid></search><sort><creationdate>20230701</creationdate><title>Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra</title><author>Belyaev, Alexander K. ; Chevrychkina, Anastasiia A. ; Polyanskiy, Vladimir A. ; Yakovlev, Yuriy A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e52368f06145abbfd829e1a7e4271be6c496480a19c190adf828a306445b49733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding energy</topic><topic>Classical and Continuum Physics</topic><topic>Crystal lattices</topic><topic>Desorption</topic><topic>Diffusion layers</topic><topic>Engineering Thermodynamics</topic><topic>Errors</topic><topic>Experimental data</topic><topic>Force and energy</topic><topic>Heat and Mass Transfer</topic><topic>Hydrogen</topic><topic>Hydrogen charging</topic><topic>Inhomogeneity</topic><topic>One dimensional models</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Skin</topic><topic>Skin effect</topic><topic>Spectra</topic><topic>Straight lines</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belyaev, Alexander K.</creatorcontrib><creatorcontrib>Chevrychkina, Anastasiia A.</creatorcontrib><creatorcontrib>Polyanskiy, Vladimir A.</creatorcontrib><creatorcontrib>Yakovlev, Yuriy A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belyaev, Alexander K.</au><au>Chevrychkina, Anastasiia A.</au><au>Polyanskiy, Vladimir A.</au><au>Yakovlev, Yuriy A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>35</volume><issue>4</issue><spage>1309</spage><epage>1323</epage><pages>1309-1323</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>Influence of the skin effect caused by the hydrogen charging of the samples on the thermal desorption spectra and the values of the hydrogen binding energy are critically analyzed. For the study, the experimental data and the McNab–Foster model are used. It is shown that an artificially formed specific inhomogeneity in the distribution of hydrogen concentrations significantly affects the shape of thermal desorption spectra and in turn the results of their interpretation based on the Choo–Lee plot and the Kissinger formula. Large errors are possible in the binding energies determined by means of the thermal desorption spectra, provided that the skin layer is formed artificially when the samples are charged with hydrogen. It is shown that the standard description of thermal desorption of hydrogen based upon the one-dimensional model leads to errors. The three-dimensional formulation of problem of hydrogen diffusion in cylindrical sample results in a broken line in the Choo–Lee plot rather than a straight line obtained in the framework of one-dimensional formulation. Comparison of experimental data with the 3D simulation data convinces that effect of the skin layer on the thermal desorption spectra is associated only with the diffusion of hydrogen at the sites of the crystal lattice in the McNab–Foster model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-022-01130-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1199-1028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2023-07, Vol.35 (4), p.1309-1323 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2828539337 |
source | SpringerNature Journals |
subjects | Binding energy Classical and Continuum Physics Crystal lattices Desorption Diffusion layers Engineering Thermodynamics Errors Experimental data Force and energy Heat and Mass Transfer Hydrogen Hydrogen charging Inhomogeneity One dimensional models Original Article Physics Physics and Astronomy Skin Skin effect Spectra Straight lines Structural Materials Theoretical and Applied Mechanics Three dimensional models |
title | Necessity of 3D modeling for simulation of impact of skin effect of hydrogen charging on the binding energy of traps determined from the thermal desorption spectra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Necessity%20of%203D%20modeling%20for%20simulation%20of%20impact%20of%20skin%20effect%20of%20hydrogen%20charging%20on%20the%20binding%20energy%20of%20traps%20determined%20from%20the%20thermal%20desorption%20spectra&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Belyaev,%20Alexander%20K.&rft.date=2023-07-01&rft.volume=35&rft.issue=4&rft.spage=1309&rft.epage=1323&rft.pages=1309-1323&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-022-01130-7&rft_dat=%3Cgale_proqu%3EA754308878%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828539337&rft_id=info:pmid/&rft_galeid=A754308878&rfr_iscdi=true |