On Goldie-supplemented modules

Let M be a left R-module. X,Y of M are ß· equivalent, Xß·Y , if and only if ... is small in ... and is small in ... . A module M is called G·-supplemented if for every submodule X of M there is a supplement submodule S of M such that Xß·S. In this work some new properties of ß· are given and G·-supp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2023, Vol.24 (1), p.325-334
Hauptverfasser: Nebiyev, Celil, Sökmez, Nurhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 334
container_issue 1
container_start_page 325
container_title Mathematical notes (Miskolci Egyetem (Hungary))
container_volume 24
creator Nebiyev, Celil
Sökmez, Nurhan
description Let M be a left R-module. X,Y of M are ß· equivalent, Xß·Y , if and only if ... is small in ... and is small in ... . A module M is called G·-supplemented if for every submodule X of M there is a supplement submodule S of M such that Xß·S. In this work some new properties of ß· are given and G·-supplemented modules are studied. Also completely G·-supplemented modules and G· -radical supplemented modules are defined.
doi_str_mv 10.18514/MMN.2023.3244
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828440077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828440077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-43b9babedcfcf124cca1c9e4e66d56bbd49b37539a28875f5f077fc601b0bb7e3</originalsourceid><addsrcrecordid>eNo9kL1PwzAUxC0EElXpyogqMSf44_kjI6qgRWrpArMV289Sq6QJdjLw35NSxC13w9170o-Qe0ZLZiSDp93uveSUi1JwgCsyY9roggMT1_-ZyluyyPlIJ0lQGqoZedifluuuCQcs8tj3DbZ4GjAs2y6MDeY7chPrJuPiz-fk8_XlY7Uptvv12-p5W3iu-FCAcJWrHQYffWQcvK-ZrxBQqSCVcwEqJ7QUVc2N0TLKSLWOXlHmqHMaxZw8Xu72qfsaMQ_22I3pNL203HADQKfB1CovLZ-6nBNG26dDW6dvy6j9xWAnDPaMwZ4xiB9qPE6L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828440077</pqid></control><display><type>article</type><title>On Goldie-supplemented modules</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nebiyev, Celil ; Sökmez, Nurhan</creator><creatorcontrib>Nebiyev, Celil ; Sökmez, Nurhan</creatorcontrib><description>Let M be a left R-module. X,Y of M are ß· equivalent, Xß·Y , if and only if ... is small in ... and is small in ... . A module M is called G·-supplemented if for every submodule X of M there is a supplement submodule S of M such that Xß·S. In this work some new properties of ß· are given and G·-supplemented modules are studied. Also completely G·-supplemented modules and G· -radical supplemented modules are defined.</description><identifier>ISSN: 1787-2405</identifier><identifier>EISSN: 1787-2413</identifier><identifier>DOI: 10.18514/MMN.2023.3244</identifier><language>eng</language><publisher>Miskolc: University of Miskolc</publisher><subject>Modules</subject><ispartof>Mathematical notes (Miskolci Egyetem (Hungary)), 2023, Vol.24 (1), p.325-334</ispartof><rights>Copyright University of Miskolc 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Nebiyev, Celil</creatorcontrib><creatorcontrib>Sökmez, Nurhan</creatorcontrib><title>On Goldie-supplemented modules</title><title>Mathematical notes (Miskolci Egyetem (Hungary))</title><description>Let M be a left R-module. X,Y of M are ß· equivalent, Xß·Y , if and only if ... is small in ... and is small in ... . A module M is called G·-supplemented if for every submodule X of M there is a supplement submodule S of M such that Xß·S. In this work some new properties of ß· are given and G·-supplemented modules are studied. Also completely G·-supplemented modules and G· -radical supplemented modules are defined.</description><subject>Modules</subject><issn>1787-2405</issn><issn>1787-2413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kL1PwzAUxC0EElXpyogqMSf44_kjI6qgRWrpArMV289Sq6QJdjLw35NSxC13w9170o-Qe0ZLZiSDp93uveSUi1JwgCsyY9roggMT1_-ZyluyyPlIJ0lQGqoZedifluuuCQcs8tj3DbZ4GjAs2y6MDeY7chPrJuPiz-fk8_XlY7Uptvv12-p5W3iu-FCAcJWrHQYffWQcvK-ZrxBQqSCVcwEqJ7QUVc2N0TLKSLWOXlHmqHMaxZw8Xu72qfsaMQ_22I3pNL203HADQKfB1CovLZ-6nBNG26dDW6dvy6j9xWAnDPaMwZ4xiB9qPE6L</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nebiyev, Celil</creator><creator>Sökmez, Nurhan</creator><general>University of Miskolc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2023</creationdate><title>On Goldie-supplemented modules</title><author>Nebiyev, Celil ; Sökmez, Nurhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-43b9babedcfcf124cca1c9e4e66d56bbd49b37539a28875f5f077fc601b0bb7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nebiyev, Celil</creatorcontrib><creatorcontrib>Sökmez, Nurhan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nebiyev, Celil</au><au>Sökmez, Nurhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Goldie-supplemented modules</atitle><jtitle>Mathematical notes (Miskolci Egyetem (Hungary))</jtitle><date>2023</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>325</spage><epage>334</epage><pages>325-334</pages><issn>1787-2405</issn><eissn>1787-2413</eissn><abstract>Let M be a left R-module. X,Y of M are ß· equivalent, Xß·Y , if and only if ... is small in ... and is small in ... . A module M is called G·-supplemented if for every submodule X of M there is a supplement submodule S of M such that Xß·S. In this work some new properties of ß· are given and G·-supplemented modules are studied. Also completely G·-supplemented modules and G· -radical supplemented modules are defined.</abstract><cop>Miskolc</cop><pub>University of Miskolc</pub><doi>10.18514/MMN.2023.3244</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1787-2405
ispartof Mathematical notes (Miskolci Egyetem (Hungary)), 2023, Vol.24 (1), p.325-334
issn 1787-2405
1787-2413
language eng
recordid cdi_proquest_journals_2828440077
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Modules
title On Goldie-supplemented modules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Goldie-supplemented%20modules&rft.jtitle=Mathematical%20notes%20(Miskolci%20Egyetem%20(Hungary))&rft.au=Nebiyev,%20Celil&rft.date=2023&rft.volume=24&rft.issue=1&rft.spage=325&rft.epage=334&rft.pages=325-334&rft.issn=1787-2405&rft.eissn=1787-2413&rft_id=info:doi/10.18514/MMN.2023.3244&rft_dat=%3Cproquest_cross%3E2828440077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828440077&rft_id=info:pmid/&rfr_iscdi=true