Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure

The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin‐orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-06, Vol.35 (25), p.n/a
Hauptverfasser: An, Taiyu, Cui, Bin, Zhang, Mingfang, Liu, Fufu, Cheng, Shaobo, Zhang, Kuikui, Ren, Xue, Liu, Liang, Cheng, Bin, Jiang, Changjun, Hu, Jifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 25
container_start_page
container_title Advanced materials (Weinheim)
container_volume 35
creator An, Taiyu
Cui, Bin
Zhang, Mingfang
Liu, Fufu
Cheng, Shaobo
Zhang, Kuikui
Ren, Xue
Liu, Liang
Cheng, Bin
Jiang, Changjun
Hu, Jifan
description The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin‐orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging. In this study, it is demonstrated that a sizable magnetoresistance effect related to orbital current and SOT can be observed in Ni81Fe19/CuOx/TaN heterostructures with various CuOx oxidization concentrations. The ionic liquid gating induces the migration of oxygen ions, which modulates the oxygen concentration at the Ni81Fe19/CuOx interface, leading to reversible manipulation of the magnetoresistance effect and SOT. The existence of a thick TaN capping layer allows for sophisticated internal oxygen ion reconstruction in the CuOx layer, rather than conventional external ion exchange. These results provide a method for the reversible and dynamic manipulation of the orbital current and SOT generation efficiency, thereby advancing the development of spin‐orbitronic devices through ionic engineering. A sizable orbital current related magnetoresistance effect and spin‐orbit torque are observed in Ni81Fe19/CuOx/TaN heterostructures, and can be substantially modulated through a fine‐tuning of oxygen distribution through ion liquid gating. The TaN prevents the ion exchange between heterostructure and ion liquid, but inspires the internal oxygen ion reconstruction in CuOx, paving an intriguing way for controlling spin‐orbitronic devices.
doi_str_mv 10.1002/adma.202300858
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2828139482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828139482</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2338-7e3c47191d544eb6c0501e8c6c40056a9d63d7d776a985fabfc02f5f29f579353</originalsourceid><addsrcrecordid>eNo9kEFvwjAMRqNpk8bYrjtH2rngJE2bHFEHYxLQC9s1CmmKgkrbpakG_35FTJxsf3qy5YfQK4EJAaBTXRz1hAJlAIKLOzQinJIoBsnv0Qgk45FMYvGInrruAAAygWSEinllTfDO6Aqvde3avtLBNTVuSpz7nQtDnvXe2zrgb6dxfjrvbY3Xbu-vnKvxxgmysEROsz4_Tbd6g5c2WN90wfcm9N4-o4dSV519-a9j9LWYb7NltMo_PrPZKmopYyJKLTNxSiQpeBzbXWKAA7HCJCYG4ImWRcKKtEjToRW81LvSAC15SWXJ0-E_NkZv172tb3562wV1aHpfDycVFVQQJmNBB0peqV9X2bNqvTtqf1YE1EWjumhUN41q9r6e3Sb2BziNaAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828139482</pqid></control><display><type>article</type><title>Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure</title><source>Access via Wiley Online Library</source><creator>An, Taiyu ; Cui, Bin ; Zhang, Mingfang ; Liu, Fufu ; Cheng, Shaobo ; Zhang, Kuikui ; Ren, Xue ; Liu, Liang ; Cheng, Bin ; Jiang, Changjun ; Hu, Jifan</creator><creatorcontrib>An, Taiyu ; Cui, Bin ; Zhang, Mingfang ; Liu, Fufu ; Cheng, Shaobo ; Zhang, Kuikui ; Ren, Xue ; Liu, Liang ; Cheng, Bin ; Jiang, Changjun ; Hu, Jifan</creatorcontrib><description>The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin‐orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging. In this study, it is demonstrated that a sizable magnetoresistance effect related to orbital current and SOT can be observed in Ni81Fe19/CuOx/TaN heterostructures with various CuOx oxidization concentrations. The ionic liquid gating induces the migration of oxygen ions, which modulates the oxygen concentration at the Ni81Fe19/CuOx interface, leading to reversible manipulation of the magnetoresistance effect and SOT. The existence of a thick TaN capping layer allows for sophisticated internal oxygen ion reconstruction in the CuOx layer, rather than conventional external ion exchange. These results provide a method for the reversible and dynamic manipulation of the orbital current and SOT generation efficiency, thereby advancing the development of spin‐orbitronic devices through ionic engineering. A sizable orbital current related magnetoresistance effect and spin‐orbit torque are observed in Ni81Fe19/CuOx/TaN heterostructures, and can be substantially modulated through a fine‐tuning of oxygen distribution through ion liquid gating. The TaN prevents the ion exchange between heterostructure and ion liquid, but inspires the internal oxygen ion reconstruction in CuOx, paving an intriguing way for controlling spin‐orbitronic devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202300858</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Dynamic control ; electric field control ; Hall effect ; Heavy metals ; Heterostructures ; Ion exchange ; ion migration ; Ionic liquids ; light metal oxides ; Magnetoresistance ; Magnetoresistivity ; Metal oxides ; orbital current ; Oxygen ions ; spin‐orbit torque</subject><ispartof>Advanced materials (Weinheim), 2023-06, Vol.35 (25), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1570-1235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202300858$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202300858$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>An, Taiyu</creatorcontrib><creatorcontrib>Cui, Bin</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Liu, Fufu</creatorcontrib><creatorcontrib>Cheng, Shaobo</creatorcontrib><creatorcontrib>Zhang, Kuikui</creatorcontrib><creatorcontrib>Ren, Xue</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Jiang, Changjun</creatorcontrib><creatorcontrib>Hu, Jifan</creatorcontrib><title>Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure</title><title>Advanced materials (Weinheim)</title><description>The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin‐orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging. In this study, it is demonstrated that a sizable magnetoresistance effect related to orbital current and SOT can be observed in Ni81Fe19/CuOx/TaN heterostructures with various CuOx oxidization concentrations. The ionic liquid gating induces the migration of oxygen ions, which modulates the oxygen concentration at the Ni81Fe19/CuOx interface, leading to reversible manipulation of the magnetoresistance effect and SOT. The existence of a thick TaN capping layer allows for sophisticated internal oxygen ion reconstruction in the CuOx layer, rather than conventional external ion exchange. These results provide a method for the reversible and dynamic manipulation of the orbital current and SOT generation efficiency, thereby advancing the development of spin‐orbitronic devices through ionic engineering. A sizable orbital current related magnetoresistance effect and spin‐orbit torque are observed in Ni81Fe19/CuOx/TaN heterostructures, and can be substantially modulated through a fine‐tuning of oxygen distribution through ion liquid gating. The TaN prevents the ion exchange between heterostructure and ion liquid, but inspires the internal oxygen ion reconstruction in CuOx, paving an intriguing way for controlling spin‐orbitronic devices.</description><subject>Dynamic control</subject><subject>electric field control</subject><subject>Hall effect</subject><subject>Heavy metals</subject><subject>Heterostructures</subject><subject>Ion exchange</subject><subject>ion migration</subject><subject>Ionic liquids</subject><subject>light metal oxides</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Metal oxides</subject><subject>orbital current</subject><subject>Oxygen ions</subject><subject>spin‐orbit torque</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEFvwjAMRqNpk8bYrjtH2rngJE2bHFEHYxLQC9s1CmmKgkrbpakG_35FTJxsf3qy5YfQK4EJAaBTXRz1hAJlAIKLOzQinJIoBsnv0Qgk45FMYvGInrruAAAygWSEinllTfDO6Aqvde3avtLBNTVuSpz7nQtDnvXe2zrgb6dxfjrvbY3Xbu-vnKvxxgmysEROsz4_Tbd6g5c2WN90wfcm9N4-o4dSV519-a9j9LWYb7NltMo_PrPZKmopYyJKLTNxSiQpeBzbXWKAA7HCJCYG4ImWRcKKtEjToRW81LvSAC15SWXJ0-E_NkZv172tb3562wV1aHpfDycVFVQQJmNBB0peqV9X2bNqvTtqf1YE1EWjumhUN41q9r6e3Sb2BziNaAk</recordid><startdate>20230622</startdate><enddate>20230622</enddate><creator>An, Taiyu</creator><creator>Cui, Bin</creator><creator>Zhang, Mingfang</creator><creator>Liu, Fufu</creator><creator>Cheng, Shaobo</creator><creator>Zhang, Kuikui</creator><creator>Ren, Xue</creator><creator>Liu, Liang</creator><creator>Cheng, Bin</creator><creator>Jiang, Changjun</creator><creator>Hu, Jifan</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1570-1235</orcidid></search><sort><creationdate>20230622</creationdate><title>Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure</title><author>An, Taiyu ; Cui, Bin ; Zhang, Mingfang ; Liu, Fufu ; Cheng, Shaobo ; Zhang, Kuikui ; Ren, Xue ; Liu, Liang ; Cheng, Bin ; Jiang, Changjun ; Hu, Jifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2338-7e3c47191d544eb6c0501e8c6c40056a9d63d7d776a985fabfc02f5f29f579353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dynamic control</topic><topic>electric field control</topic><topic>Hall effect</topic><topic>Heavy metals</topic><topic>Heterostructures</topic><topic>Ion exchange</topic><topic>ion migration</topic><topic>Ionic liquids</topic><topic>light metal oxides</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Metal oxides</topic><topic>orbital current</topic><topic>Oxygen ions</topic><topic>spin‐orbit torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Taiyu</creatorcontrib><creatorcontrib>Cui, Bin</creatorcontrib><creatorcontrib>Zhang, Mingfang</creatorcontrib><creatorcontrib>Liu, Fufu</creatorcontrib><creatorcontrib>Cheng, Shaobo</creatorcontrib><creatorcontrib>Zhang, Kuikui</creatorcontrib><creatorcontrib>Ren, Xue</creatorcontrib><creatorcontrib>Liu, Liang</creatorcontrib><creatorcontrib>Cheng, Bin</creatorcontrib><creatorcontrib>Jiang, Changjun</creatorcontrib><creatorcontrib>Hu, Jifan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Taiyu</au><au>Cui, Bin</au><au>Zhang, Mingfang</au><au>Liu, Fufu</au><au>Cheng, Shaobo</au><au>Zhang, Kuikui</au><au>Ren, Xue</au><au>Liu, Liang</au><au>Cheng, Bin</au><au>Jiang, Changjun</au><au>Hu, Jifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-06-22</date><risdate>2023</risdate><volume>35</volume><issue>25</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin‐orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging. In this study, it is demonstrated that a sizable magnetoresistance effect related to orbital current and SOT can be observed in Ni81Fe19/CuOx/TaN heterostructures with various CuOx oxidization concentrations. The ionic liquid gating induces the migration of oxygen ions, which modulates the oxygen concentration at the Ni81Fe19/CuOx interface, leading to reversible manipulation of the magnetoresistance effect and SOT. The existence of a thick TaN capping layer allows for sophisticated internal oxygen ion reconstruction in the CuOx layer, rather than conventional external ion exchange. These results provide a method for the reversible and dynamic manipulation of the orbital current and SOT generation efficiency, thereby advancing the development of spin‐orbitronic devices through ionic engineering. A sizable orbital current related magnetoresistance effect and spin‐orbit torque are observed in Ni81Fe19/CuOx/TaN heterostructures, and can be substantially modulated through a fine‐tuning of oxygen distribution through ion liquid gating. The TaN prevents the ion exchange between heterostructure and ion liquid, but inspires the internal oxygen ion reconstruction in CuOx, paving an intriguing way for controlling spin‐orbitronic devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202300858</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1570-1235</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-06, Vol.35 (25), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2828139482
source Access via Wiley Online Library
subjects Dynamic control
electric field control
Hall effect
Heavy metals
Heterostructures
Ion exchange
ion migration
Ionic liquids
light metal oxides
Magnetoresistance
Magnetoresistivity
Metal oxides
orbital current
Oxygen ions
spin‐orbit torque
title Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni81Fe19/CuOx/TaN Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Manipulation%20of%20Orbital%20Current%20Via%20Oxygen%20Migration%20in%20Ni81Fe19/CuOx/TaN%20Heterostructure&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=An,%20Taiyu&rft.date=2023-06-22&rft.volume=35&rft.issue=25&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202300858&rft_dat=%3Cproquest_wiley%3E2828139482%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828139482&rft_id=info:pmid/&rfr_iscdi=true