Integrated photonics modular arithmetic processor

Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-08
Hauptverfasser: Wu, Yuepeng, Guo, Hongxiang, Bowen, Zhang, Qiu, Jifang, Yang, Zhisheng, Wu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Yuepeng
Guo, Hongxiang
Bowen, Zhang
Qiu, Jifang
Yang, Zhisheng
Wu, Jian
description Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calculations, consequently limiting their potential applications, and their heavy reliance on analog-to-digital (AD) and digital-to-analog (DA) conversion interfaces undermines their performance. Here we propose an innovative photonic computing architecture featuring scalable calculation precision and a novel photonic conversion interface. By leveraging Residue Number System (RNS) theory, the high-precision calculation is decomposed into multiple low-precision modular arithmetic operations executed through optical phase manipulation. Those operations directly interact with the digital system via our proposed optical digital-to-phase converter (ODPC) and phase-to-digital converter (OPDC). Through experimental demonstrations, we showcase a calculation precision of 9 bits and verify the feasibility of the ODPC/OPDC photonic interface. This approach paves the path towards liberating photonic computing from the constraints imposed by limited precision and AD/DA converters.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2828090842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828090842</sourcerecordid><originalsourceid>FETCH-proquest_journals_28280908423</originalsourceid><addsrcrecordid>eNqNjUEKwjAQAIMgWLR_CHgupBur8SyK3r2X0K42pc3WbPJ_c_ABnuYwA7MSBWhdV-YAsBEl86iUguMJmkYXon74iO9gI_ZyGSiSdx3Lmfo02SBtcHGYMbpOLoE6ZKawE-uXnRjLH7dif7s-L_cqF5-EHNuRUvBZtWDAqLPKZ_1f9QUOHjRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828090842</pqid></control><display><type>article</type><title>Integrated photonics modular arithmetic processor</title><source>Free E- Journals</source><creator>Wu, Yuepeng ; Guo, Hongxiang ; Bowen, Zhang ; Qiu, Jifang ; Yang, Zhisheng ; Wu, Jian</creator><creatorcontrib>Wu, Yuepeng ; Guo, Hongxiang ; Bowen, Zhang ; Qiu, Jifang ; Yang, Zhisheng ; Wu, Jian</creatorcontrib><description>Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calculations, consequently limiting their potential applications, and their heavy reliance on analog-to-digital (AD) and digital-to-analog (DA) conversion interfaces undermines their performance. Here we propose an innovative photonic computing architecture featuring scalable calculation precision and a novel photonic conversion interface. By leveraging Residue Number System (RNS) theory, the high-precision calculation is decomposed into multiple low-precision modular arithmetic operations executed through optical phase manipulation. Those operations directly interact with the digital system via our proposed optical digital-to-phase converter (ODPC) and phase-to-digital converter (OPDC). Through experimental demonstrations, we showcase a calculation precision of 9 bits and verify the feasibility of the ODPC/OPDC photonic interface. This approach paves the path towards liberating photonic computing from the constraints imposed by limited precision and AD/DA converters.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arithmetic ; Computation ; Data processing ; Microprocessors ; Number systems ; Optical communication ; Photonics</subject><ispartof>arXiv.org, 2023-08</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Yuepeng</creatorcontrib><creatorcontrib>Guo, Hongxiang</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Qiu, Jifang</creatorcontrib><creatorcontrib>Yang, Zhisheng</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><title>Integrated photonics modular arithmetic processor</title><title>arXiv.org</title><description>Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calculations, consequently limiting their potential applications, and their heavy reliance on analog-to-digital (AD) and digital-to-analog (DA) conversion interfaces undermines their performance. Here we propose an innovative photonic computing architecture featuring scalable calculation precision and a novel photonic conversion interface. By leveraging Residue Number System (RNS) theory, the high-precision calculation is decomposed into multiple low-precision modular arithmetic operations executed through optical phase manipulation. Those operations directly interact with the digital system via our proposed optical digital-to-phase converter (ODPC) and phase-to-digital converter (OPDC). Through experimental demonstrations, we showcase a calculation precision of 9 bits and verify the feasibility of the ODPC/OPDC photonic interface. This approach paves the path towards liberating photonic computing from the constraints imposed by limited precision and AD/DA converters.</description><subject>Arithmetic</subject><subject>Computation</subject><subject>Data processing</subject><subject>Microprocessors</subject><subject>Number systems</subject><subject>Optical communication</subject><subject>Photonics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUEKwjAQAIMgWLR_CHgupBur8SyK3r2X0K42pc3WbPJ_c_ABnuYwA7MSBWhdV-YAsBEl86iUguMJmkYXon74iO9gI_ZyGSiSdx3Lmfo02SBtcHGYMbpOLoE6ZKawE-uXnRjLH7dif7s-L_cqF5-EHNuRUvBZtWDAqLPKZ_1f9QUOHjRo</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Wu, Yuepeng</creator><creator>Guo, Hongxiang</creator><creator>Bowen, Zhang</creator><creator>Qiu, Jifang</creator><creator>Yang, Zhisheng</creator><creator>Wu, Jian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230814</creationdate><title>Integrated photonics modular arithmetic processor</title><author>Wu, Yuepeng ; Guo, Hongxiang ; Bowen, Zhang ; Qiu, Jifang ; Yang, Zhisheng ; Wu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28280908423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arithmetic</topic><topic>Computation</topic><topic>Data processing</topic><topic>Microprocessors</topic><topic>Number systems</topic><topic>Optical communication</topic><topic>Photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuepeng</creatorcontrib><creatorcontrib>Guo, Hongxiang</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Qiu, Jifang</creatorcontrib><creatorcontrib>Yang, Zhisheng</creatorcontrib><creatorcontrib>Wu, Jian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuepeng</au><au>Guo, Hongxiang</au><au>Bowen, Zhang</au><au>Qiu, Jifang</au><au>Yang, Zhisheng</au><au>Wu, Jian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Integrated photonics modular arithmetic processor</atitle><jtitle>arXiv.org</jtitle><date>2023-08-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Integrated photonics computing has emerged as a promising approach to overcome the limitations of electronic processors in the post-Moore era, capitalizing on the superiority of photonic systems. However, present integrated photonics computing systems face challenges in achieving high-precision calculations, consequently limiting their potential applications, and their heavy reliance on analog-to-digital (AD) and digital-to-analog (DA) conversion interfaces undermines their performance. Here we propose an innovative photonic computing architecture featuring scalable calculation precision and a novel photonic conversion interface. By leveraging Residue Number System (RNS) theory, the high-precision calculation is decomposed into multiple low-precision modular arithmetic operations executed through optical phase manipulation. Those operations directly interact with the digital system via our proposed optical digital-to-phase converter (ODPC) and phase-to-digital converter (OPDC). Through experimental demonstrations, we showcase a calculation precision of 9 bits and verify the feasibility of the ODPC/OPDC photonic interface. This approach paves the path towards liberating photonic computing from the constraints imposed by limited precision and AD/DA converters.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2828090842
source Free E- Journals
subjects Arithmetic
Computation
Data processing
Microprocessors
Number systems
Optical communication
Photonics
title Integrated photonics modular arithmetic processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Integrated%20photonics%20modular%20arithmetic%20processor&rft.jtitle=arXiv.org&rft.au=Wu,%20Yuepeng&rft.date=2023-08-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2828090842%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828090842&rft_id=info:pmid/&rfr_iscdi=true