High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis
In many mechanical, electrical, and general physical systems evolving over time or space, spectral analysis methods as Fast Fourier Transform (FFT), Short Term Fourier Transform (STFT), Power Spectrum Density (PSD) plays a very important role. They allow an extraction of required information content...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tuor, Andreas Canzani, Nico Rüggeberg, Tobias Gorenflo, Stefan Simons, Gerd Bättig, Bruno Iseli, Daniel |
description | In many mechanical, electrical, and general physical systems evolving over time or space, spectral analysis methods as Fast Fourier Transform (FFT), Short Term Fourier Transform (STFT), Power Spectrum Density (PSD) plays a very important role. They allow an extraction of required information content from signals in another base by decomposing it in its spectral components for further processing.In theory this approach is very powerful, even in some 'simple' or 'not too complicated' practical cases it has proven its utility and efficiency. However, for real-world applications such as mechanical modal analysis of large dimension systems including damping, noise and unpredictable excitation those signals are often so complex that it can be almost impossible to obtain a high-resolution spectral decomposition with these methods due to the time-bandwidth limitation. In this paper we describe an alternative approach for spectral analysis based on the High Order Dynamical Mode Decomposition (HODMD) and Kernel Density Spectrum (KDS). We will show that this method allows overcoming some limitations of the FFT and may be a promising approach to for a much more precisely the spectral decomposition. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2828072507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828072507</sourcerecordid><originalsourceid>FETCH-proquest_journals_28280725073</originalsourceid><addsrcrecordid>eNqNjtEKgjAYhUcQJOU7_NC1sDZNbyMLbySI6FbWnDnRzfbrhW-fQg_Q1YHvfAfOiniM80OQhIxtiI_YUErZMWZRxD1yz_S7hpsrlYN0MqLTEnJbKkiVtF1vUQ_aGqisg1zJWhgtRQtP_XJiKRCEKZfBDE9GtBNq3JF1JVpU_i-3ZH-9PM5Z0Dv7GRUORWNHN8tYsIQldH5CY_6f9QWi-D89</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828072507</pqid></control><display><type>article</type><title>High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis</title><source>Free E- Journals</source><creator>Tuor, Andreas ; Canzani, Nico ; Rüggeberg, Tobias ; Gorenflo, Stefan ; Simons, Gerd ; Bättig, Bruno ; Iseli, Daniel</creator><creatorcontrib>Tuor, Andreas ; Canzani, Nico ; Rüggeberg, Tobias ; Gorenflo, Stefan ; Simons, Gerd ; Bättig, Bruno ; Iseli, Daniel</creatorcontrib><description>In many mechanical, electrical, and general physical systems evolving over time or space, spectral analysis methods as Fast Fourier Transform (FFT), Short Term Fourier Transform (STFT), Power Spectrum Density (PSD) plays a very important role. They allow an extraction of required information content from signals in another base by decomposing it in its spectral components for further processing.In theory this approach is very powerful, even in some 'simple' or 'not too complicated' practical cases it has proven its utility and efficiency. However, for real-world applications such as mechanical modal analysis of large dimension systems including damping, noise and unpredictable excitation those signals are often so complex that it can be almost impossible to obtain a high-resolution spectral decomposition with these methods due to the time-bandwidth limitation. In this paper we describe an alternative approach for spectral analysis based on the High Order Dynamical Mode Decomposition (HODMD) and Kernel Density Spectrum (KDS). We will show that this method allows overcoming some limitations of the FFT and may be a promising approach to for a much more precisely the spectral decomposition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Damping ; Density ; Fast Fourier transformations ; Fourier transforms ; Modal analysis ; Spectrum analysis</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Tuor, Andreas</creatorcontrib><creatorcontrib>Canzani, Nico</creatorcontrib><creatorcontrib>Rüggeberg, Tobias</creatorcontrib><creatorcontrib>Gorenflo, Stefan</creatorcontrib><creatorcontrib>Simons, Gerd</creatorcontrib><creatorcontrib>Bättig, Bruno</creatorcontrib><creatorcontrib>Iseli, Daniel</creatorcontrib><title>High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis</title><title>arXiv.org</title><description>In many mechanical, electrical, and general physical systems evolving over time or space, spectral analysis methods as Fast Fourier Transform (FFT), Short Term Fourier Transform (STFT), Power Spectrum Density (PSD) plays a very important role. They allow an extraction of required information content from signals in another base by decomposing it in its spectral components for further processing.In theory this approach is very powerful, even in some 'simple' or 'not too complicated' practical cases it has proven its utility and efficiency. However, for real-world applications such as mechanical modal analysis of large dimension systems including damping, noise and unpredictable excitation those signals are often so complex that it can be almost impossible to obtain a high-resolution spectral decomposition with these methods due to the time-bandwidth limitation. In this paper we describe an alternative approach for spectral analysis based on the High Order Dynamical Mode Decomposition (HODMD) and Kernel Density Spectrum (KDS). We will show that this method allows overcoming some limitations of the FFT and may be a promising approach to for a much more precisely the spectral decomposition.</description><subject>Damping</subject><subject>Density</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Modal analysis</subject><subject>Spectrum analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjtEKgjAYhUcQJOU7_NC1sDZNbyMLbySI6FbWnDnRzfbrhW-fQg_Q1YHvfAfOiniM80OQhIxtiI_YUErZMWZRxD1yz_S7hpsrlYN0MqLTEnJbKkiVtF1vUQ_aGqisg1zJWhgtRQtP_XJiKRCEKZfBDE9GtBNq3JF1JVpU_i-3ZH-9PM5Z0Dv7GRUORWNHN8tYsIQldH5CY_6f9QWi-D89</recordid><startdate>20230619</startdate><enddate>20230619</enddate><creator>Tuor, Andreas</creator><creator>Canzani, Nico</creator><creator>Rüggeberg, Tobias</creator><creator>Gorenflo, Stefan</creator><creator>Simons, Gerd</creator><creator>Bättig, Bruno</creator><creator>Iseli, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230619</creationdate><title>High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis</title><author>Tuor, Andreas ; Canzani, Nico ; Rüggeberg, Tobias ; Gorenflo, Stefan ; Simons, Gerd ; Bättig, Bruno ; Iseli, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28280725073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Damping</topic><topic>Density</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Modal analysis</topic><topic>Spectrum analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tuor, Andreas</creatorcontrib><creatorcontrib>Canzani, Nico</creatorcontrib><creatorcontrib>Rüggeberg, Tobias</creatorcontrib><creatorcontrib>Gorenflo, Stefan</creatorcontrib><creatorcontrib>Simons, Gerd</creatorcontrib><creatorcontrib>Bättig, Bruno</creatorcontrib><creatorcontrib>Iseli, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tuor, Andreas</au><au>Canzani, Nico</au><au>Rüggeberg, Tobias</au><au>Gorenflo, Stefan</au><au>Simons, Gerd</au><au>Bättig, Bruno</au><au>Iseli, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis</atitle><jtitle>arXiv.org</jtitle><date>2023-06-19</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In many mechanical, electrical, and general physical systems evolving over time or space, spectral analysis methods as Fast Fourier Transform (FFT), Short Term Fourier Transform (STFT), Power Spectrum Density (PSD) plays a very important role. They allow an extraction of required information content from signals in another base by decomposing it in its spectral components for further processing.In theory this approach is very powerful, even in some 'simple' or 'not too complicated' practical cases it has proven its utility and efficiency. However, for real-world applications such as mechanical modal analysis of large dimension systems including damping, noise and unpredictable excitation those signals are often so complex that it can be almost impossible to obtain a high-resolution spectral decomposition with these methods due to the time-bandwidth limitation. In this paper we describe an alternative approach for spectral analysis based on the High Order Dynamical Mode Decomposition (HODMD) and Kernel Density Spectrum (KDS). We will show that this method allows overcoming some limitations of the FFT and may be a promising approach to for a much more precisely the spectral decomposition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2828072507 |
source | Free E- Journals |
subjects | Damping Density Fast Fourier transformations Fourier transforms Modal analysis Spectrum analysis |
title | High Order Dynamic Mode Decomposition for Mechanical Vibrations and Modal Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A39%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High%20Order%20Dynamic%20Mode%20Decomposition%20for%20Mechanical%20Vibrations%20and%20Modal%20Analysis&rft.jtitle=arXiv.org&rft.au=Tuor,%20Andreas&rft.date=2023-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2828072507%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828072507&rft_id=info:pmid/&rfr_iscdi=true |