Prediction and analysis of preparation of cellulose nanocrystals with machine learning
Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random for...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2023-07, Vol.30 (10), p.6273-6287 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6287 |
---|---|
container_issue | 10 |
container_start_page | 6273 |
container_title | Cellulose (London) |
container_volume | 30 |
creator | Wang, Hongzhen Du, Qin Liu, Yalin Cheng, Shijie |
description | Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one (
R
2
= 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy (
R
2
= 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs. |
doi_str_mv | 10.1007/s10570-023-05260-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828056320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828056320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJpNlsjlL8goIeingLs2m23bLNrskW6b83dgVvHoZheD9gHsauOdxyAHUXOUgFOaDIQWIBOZ6wCZcK87LEj1M2AV3oH1mfs4sYtwCgFfIJe38LbtXYoel8Rn6VhtpDbGLW1VkfXE-Bjlo6rWvbfdtFl3nynQ2HOFAbs69m2GQ7spvGu6x1FHzj15fsrE6iu_rdU7Z8fFjOn_PF69PL_H6RW8H1kM_I1VKTKoUABVaIStmqKspqJiVJXSrOq8JKUrUjpbEmUIgKS44oFVkxZTdjbR-6z72Lg9l2-5BeiAZLLEEWAiG5cHTZ0MUYXG360OwoHAwH84PPjPhM4mOO-AymkBhDMZn92oW_6n9S35GnczY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828056320</pqid></control><display><type>article</type><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><source>SpringerNature Journals</source><creator>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</creator><creatorcontrib>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</creatorcontrib><description>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one (
R
2
= 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy (
R
2
= 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-023-05260-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial neural networks ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Crystallinity ; Decision trees ; Glass ; Impact analysis ; Machine learning ; Nanocomposites ; Nanocrystals ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Reagents ; Regression analysis ; Sustainable Development</subject><ispartof>Cellulose (London), 2023-07, Vol.30 (10), p.6273-6287</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</citedby><cites>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-023-05260-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-023-05260-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Hongzhen</creatorcontrib><creatorcontrib>Du, Qin</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one (
R
2
= 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy (
R
2
= 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallinity</subject><subject>Decision trees</subject><subject>Glass</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Reagents</subject><subject>Regression analysis</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJpNlsjlL8goIeingLs2m23bLNrskW6b83dgVvHoZheD9gHsauOdxyAHUXOUgFOaDIQWIBOZ6wCZcK87LEj1M2AV3oH1mfs4sYtwCgFfIJe38LbtXYoel8Rn6VhtpDbGLW1VkfXE-Bjlo6rWvbfdtFl3nynQ2HOFAbs69m2GQ7spvGu6x1FHzj15fsrE6iu_rdU7Z8fFjOn_PF69PL_H6RW8H1kM_I1VKTKoUABVaIStmqKspqJiVJXSrOq8JKUrUjpbEmUIgKS44oFVkxZTdjbR-6z72Lg9l2-5BeiAZLLEEWAiG5cHTZ0MUYXG360OwoHAwH84PPjPhM4mOO-AymkBhDMZn92oW_6n9S35GnczY</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Hongzhen</creator><creator>Du, Qin</creator><creator>Liu, Yalin</creator><creator>Cheng, Shijie</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230701</creationdate><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><author>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallinity</topic><topic>Decision trees</topic><topic>Glass</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Reagents</topic><topic>Regression analysis</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongzhen</creatorcontrib><creatorcontrib>Du, Qin</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongzhen</au><au>Du, Qin</au><au>Liu, Yalin</au><au>Cheng, Shijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>30</volume><issue>10</issue><spage>6273</spage><epage>6287</epage><pages>6273-6287</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one (
R
2
= 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy (
R
2
= 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-023-05260-2</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2023-07, Vol.30 (10), p.6273-6287 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2828056320 |
source | SpringerNature Journals |
subjects | Algorithms Artificial neural networks Bioorganic Chemistry Cellulose Ceramics Chemistry Chemistry and Materials Science Composites Crystallinity Decision trees Glass Impact analysis Machine learning Nanocomposites Nanocrystals Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences Reagents Regression analysis Sustainable Development |
title | Prediction and analysis of preparation of cellulose nanocrystals with machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20analysis%20of%20preparation%20of%20cellulose%20nanocrystals%20with%20machine%20learning&rft.jtitle=Cellulose%20(London)&rft.au=Wang,%20Hongzhen&rft.date=2023-07-01&rft.volume=30&rft.issue=10&rft.spage=6273&rft.epage=6287&rft.pages=6273-6287&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-023-05260-2&rft_dat=%3Cproquest_cross%3E2828056320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828056320&rft_id=info:pmid/&rfr_iscdi=true |