Prediction and analysis of preparation of cellulose nanocrystals with machine learning

Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2023-07, Vol.30 (10), p.6273-6287
Hauptverfasser: Wang, Hongzhen, Du, Qin, Liu, Yalin, Cheng, Shijie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6287
container_issue 10
container_start_page 6273
container_title Cellulose (London)
container_volume 30
creator Wang, Hongzhen
Du, Qin
Liu, Yalin
Cheng, Shijie
description Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one ( R 2  = 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy ( R 2  = 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.
doi_str_mv 10.1007/s10570-023-05260-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2828056320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828056320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJpNlsjlL8goIeingLs2m23bLNrskW6b83dgVvHoZheD9gHsauOdxyAHUXOUgFOaDIQWIBOZ6wCZcK87LEj1M2AV3oH1mfs4sYtwCgFfIJe38LbtXYoel8Rn6VhtpDbGLW1VkfXE-Bjlo6rWvbfdtFl3nynQ2HOFAbs69m2GQ7spvGu6x1FHzj15fsrE6iu_rdU7Z8fFjOn_PF69PL_H6RW8H1kM_I1VKTKoUABVaIStmqKspqJiVJXSrOq8JKUrUjpbEmUIgKS44oFVkxZTdjbR-6z72Lg9l2-5BeiAZLLEEWAiG5cHTZ0MUYXG360OwoHAwH84PPjPhM4mOO-AymkBhDMZn92oW_6n9S35GnczY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828056320</pqid></control><display><type>article</type><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><source>SpringerNature Journals</source><creator>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</creator><creatorcontrib>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</creatorcontrib><description>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one ( R 2  = 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy ( R 2  = 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-023-05260-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial neural networks ; Bioorganic Chemistry ; Cellulose ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Crystallinity ; Decision trees ; Glass ; Impact analysis ; Machine learning ; Nanocomposites ; Nanocrystals ; Natural Materials ; Organic Chemistry ; Original Research ; Physical Chemistry ; Polymer Sciences ; Reagents ; Regression analysis ; Sustainable Development</subject><ispartof>Cellulose (London), 2023-07, Vol.30 (10), p.6273-6287</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</citedby><cites>FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-023-05260-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-023-05260-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Wang, Hongzhen</creatorcontrib><creatorcontrib>Du, Qin</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one ( R 2  = 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy ( R 2  = 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bioorganic Chemistry</subject><subject>Cellulose</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crystallinity</subject><subject>Decision trees</subject><subject>Glass</subject><subject>Impact analysis</subject><subject>Machine learning</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Reagents</subject><subject>Regression analysis</subject><subject>Sustainable Development</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJpNlsjlL8goIeingLs2m23bLNrskW6b83dgVvHoZheD9gHsauOdxyAHUXOUgFOaDIQWIBOZ6wCZcK87LEj1M2AV3oH1mfs4sYtwCgFfIJe38LbtXYoel8Rn6VhtpDbGLW1VkfXE-Bjlo6rWvbfdtFl3nynQ2HOFAbs69m2GQ7spvGu6x1FHzj15fsrE6iu_rdU7Z8fFjOn_PF69PL_H6RW8H1kM_I1VKTKoUABVaIStmqKspqJiVJXSrOq8JKUrUjpbEmUIgKS44oFVkxZTdjbR-6z72Lg9l2-5BeiAZLLEEWAiG5cHTZ0MUYXG360OwoHAwH84PPjPhM4mOO-AymkBhDMZn92oW_6n9S35GnczY</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Hongzhen</creator><creator>Du, Qin</creator><creator>Liu, Yalin</creator><creator>Cheng, Shijie</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230701</creationdate><title>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</title><author>Wang, Hongzhen ; Du, Qin ; Liu, Yalin ; Cheng, Shijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4aef59a7833070c33b7cbb68b455a598711b6c5a7fea792fa072272812257ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bioorganic Chemistry</topic><topic>Cellulose</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crystallinity</topic><topic>Decision trees</topic><topic>Glass</topic><topic>Impact analysis</topic><topic>Machine learning</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Reagents</topic><topic>Regression analysis</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongzhen</creatorcontrib><creatorcontrib>Du, Qin</creatorcontrib><creatorcontrib>Liu, Yalin</creatorcontrib><creatorcontrib>Cheng, Shijie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongzhen</au><au>Du, Qin</au><au>Liu, Yalin</au><au>Cheng, Shijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and analysis of preparation of cellulose nanocrystals with machine learning</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>30</volume><issue>10</issue><spage>6273</spage><epage>6287</epage><pages>6273-6287</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>Extraction of cellulose nanocrystals (CNCs) from diverse cellulose sources is a promising and sustainable approach to produce nanocomposites. However, the traditional batch experiments are time/labor-consuming. Hence, three machine learning (ML) algorithms, i.e., decision regression tree, random forest, and artificial neural networks were applied to develop ML models. The dataset collected from published literature was used to train the ML models applicable to a wide range of cellulose source and reaction conditions. Among the three ML models, the random forest algorithm was the best one ( R 2  = 0.89, RMSE = 5.52) for the yield prediction, and the decision regression tree provided the highest accuracy ( R 2  = 0.86, RSME = 6.03) for the crystallinity prediction. The concentration of reagent and cellulose source was identified as the most important feature in yield and crystallinity prediction, respectively. The partial dependence analysis showed the impact of each input feature and their combined effects on the yield and crystallinity. This study may provide new perspectives and opportunities to understand and improve the preparation of CNCs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-023-05260-2</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-0239
ispartof Cellulose (London), 2023-07, Vol.30 (10), p.6273-6287
issn 0969-0239
1572-882X
language eng
recordid cdi_proquest_journals_2828056320
source SpringerNature Journals
subjects Algorithms
Artificial neural networks
Bioorganic Chemistry
Cellulose
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Crystallinity
Decision trees
Glass
Impact analysis
Machine learning
Nanocomposites
Nanocrystals
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
Reagents
Regression analysis
Sustainable Development
title Prediction and analysis of preparation of cellulose nanocrystals with machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T17%3A24%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20analysis%20of%20preparation%20of%20cellulose%20nanocrystals%20with%20machine%20learning&rft.jtitle=Cellulose%20(London)&rft.au=Wang,%20Hongzhen&rft.date=2023-07-01&rft.volume=30&rft.issue=10&rft.spage=6273&rft.epage=6287&rft.pages=6273-6287&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-023-05260-2&rft_dat=%3Cproquest_cross%3E2828056320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828056320&rft_id=info:pmid/&rfr_iscdi=true