A Survey on Artificial Intelligence-based Acoustic Source Identification

The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, man...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Zaheer, Ruba, Ahmad, Iftekhar, Habibi, Daryoush, Islam, Kazi Yasin, Phung, Quoc Viet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Zaheer, Ruba
Ahmad, Iftekhar
Habibi, Daryoush
Islam, Kazi Yasin
Phung, Quoc Viet
description The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions.
doi_str_mv 10.1109/ACCESS.2023.3283982
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2828006290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10146285</ieee_id><doaj_id>oai_doaj_org_article_1f328788c0384f8392d424a0f4ec8cd2</doaj_id><sourcerecordid>2828006290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-fbdb2319805a10df4569db45a7dd82828e63c96861335edf224d2a383f5799153</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLgmPsF-lDwuTOfbfJYynSDgQ_T55AlNyOjNjPthP17s3WINw83XM459-Nk2SNGc4yRfKmbZrHZzAkidE6JoFKQm2xCcCkLyml5--9_n836fo9SiFTi1SRb1vnmGH_glIcur-PgnTdet_mqG6Bt_Q46A8VW92Dz2oRjP3iTb8IxGshXFroLXg8-dA_ZndNtD7Nrnmafr4uPZlms399WTb0uDENyKNzWbgnFUiCuMbKO8VLaLeO6slaQ9KCkRpaixJRysI4QZommgjpeSYk5nWarUdcGvVeH6L90PKmgvboUQtwpndYwLSjs0jkqIQyigrl0GGIZYRo5BkYYS5LW86h1iOH7CP2g9mm1Lo2vzqMgVBKJEoqOKBND30dwf10xUmcH1OiAOjugrg4k1tPI8gDwj4FZSQSnvyi3f_w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828006290</pqid></control><display><type>article</type><title>A Survey on Artificial Intelligence-based Acoustic Source Identification</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zaheer, Ruba ; Ahmad, Iftekhar ; Habibi, Daryoush ; Islam, Kazi Yasin ; Phung, Quoc Viet</creator><creatorcontrib>Zaheer, Ruba ; Ahmad, Iftekhar ; Habibi, Daryoush ; Islam, Kazi Yasin ; Phung, Quoc Viet</creatorcontrib><description>The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3283982</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustic noise ; Acoustic source identification ; Acoustic surveying ; Acoustics ; Artificial intelligence ; Deep learning ; Feature extraction ; Health care ; Machine learning ; Pattern analysis ; Pattern recognition ; Signature analysis ; Sound Classification ; Sound sources ; Surveillance ; Surveys ; Target recognition ; Task analysis</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-fbdb2319805a10df4569db45a7dd82828e63c96861335edf224d2a383f5799153</citedby><cites>FETCH-LOGICAL-c409t-fbdb2319805a10df4569db45a7dd82828e63c96861335edf224d2a383f5799153</cites><orcidid>0000-0003-4441-9631 ; 0000-0003-4053-3293 ; 0000-0002-6138-3944 ; 0000-0002-7662-6830 ; 0000-0002-3969-034X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10146285$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zaheer, Ruba</creatorcontrib><creatorcontrib>Ahmad, Iftekhar</creatorcontrib><creatorcontrib>Habibi, Daryoush</creatorcontrib><creatorcontrib>Islam, Kazi Yasin</creatorcontrib><creatorcontrib>Phung, Quoc Viet</creatorcontrib><title>A Survey on Artificial Intelligence-based Acoustic Source Identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions.</description><subject>Acoustic noise</subject><subject>Acoustic source identification</subject><subject>Acoustic surveying</subject><subject>Acoustics</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Pattern analysis</subject><subject>Pattern recognition</subject><subject>Signature analysis</subject><subject>Sound Classification</subject><subject>Sound sources</subject><subject>Surveillance</subject><subject>Surveys</subject><subject>Target recognition</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLgmPsF-lDwuTOfbfJYynSDgQ_T55AlNyOjNjPthP17s3WINw83XM459-Nk2SNGc4yRfKmbZrHZzAkidE6JoFKQm2xCcCkLyml5--9_n836fo9SiFTi1SRb1vnmGH_glIcur-PgnTdet_mqG6Bt_Q46A8VW92Dz2oRjP3iTb8IxGshXFroLXg8-dA_ZndNtD7Nrnmafr4uPZlms399WTb0uDENyKNzWbgnFUiCuMbKO8VLaLeO6slaQ9KCkRpaixJRysI4QZommgjpeSYk5nWarUdcGvVeH6L90PKmgvboUQtwpndYwLSjs0jkqIQyigrl0GGIZYRo5BkYYS5LW86h1iOH7CP2g9mm1Lo2vzqMgVBKJEoqOKBND30dwf10xUmcH1OiAOjugrg4k1tPI8gDwj4FZSQSnvyi3f_w</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zaheer, Ruba</creator><creator>Ahmad, Iftekhar</creator><creator>Habibi, Daryoush</creator><creator>Islam, Kazi Yasin</creator><creator>Phung, Quoc Viet</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4441-9631</orcidid><orcidid>https://orcid.org/0000-0003-4053-3293</orcidid><orcidid>https://orcid.org/0000-0002-6138-3944</orcidid><orcidid>https://orcid.org/0000-0002-7662-6830</orcidid><orcidid>https://orcid.org/0000-0002-3969-034X</orcidid></search><sort><creationdate>20230101</creationdate><title>A Survey on Artificial Intelligence-based Acoustic Source Identification</title><author>Zaheer, Ruba ; Ahmad, Iftekhar ; Habibi, Daryoush ; Islam, Kazi Yasin ; Phung, Quoc Viet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-fbdb2319805a10df4569db45a7dd82828e63c96861335edf224d2a383f5799153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustic noise</topic><topic>Acoustic source identification</topic><topic>Acoustic surveying</topic><topic>Acoustics</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Pattern analysis</topic><topic>Pattern recognition</topic><topic>Signature analysis</topic><topic>Sound Classification</topic><topic>Sound sources</topic><topic>Surveillance</topic><topic>Surveys</topic><topic>Target recognition</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaheer, Ruba</creatorcontrib><creatorcontrib>Ahmad, Iftekhar</creatorcontrib><creatorcontrib>Habibi, Daryoush</creatorcontrib><creatorcontrib>Islam, Kazi Yasin</creatorcontrib><creatorcontrib>Phung, Quoc Viet</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaheer, Ruba</au><au>Ahmad, Iftekhar</au><au>Habibi, Daryoush</au><au>Islam, Kazi Yasin</au><au>Phung, Quoc Viet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on Artificial Intelligence-based Acoustic Source Identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The concept of Acoustic Source Identification (ASI), which refers to the process of identifying noise sources has attracted increasing attention in recent years. The ASI technology can be used for surveillance, monitoring, and maintenance applications in a wide range of sectors, such as defence, manufacturing, healthcare, and agriculture. Acoustic signature analysis and pattern recognition remain the core technologies for noise source identification. Manual identification of acoustic signatures, however, has become increasingly challenging as dataset sizes grow. As a result, the use of Artificial Intelligence (AI) techniques for identifying noise sources has become increasingly relevant and useful. In this paper, we provide a comprehensive review of AI-based acoustic source identification techniques. We analyze the strengths and weaknesses of AI-based ASI processes and associated methods proposed by researchers in the literature. Additionally, we did a detailed survey of ASI applications in machinery, underwater applications, environment/event source recognition, healthcare, and other fields. We also highlight relevant research directions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3283982</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4441-9631</orcidid><orcidid>https://orcid.org/0000-0003-4053-3293</orcidid><orcidid>https://orcid.org/0000-0002-6138-3944</orcidid><orcidid>https://orcid.org/0000-0002-7662-6830</orcidid><orcidid>https://orcid.org/0000-0002-3969-034X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2828006290
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acoustic noise
Acoustic source identification
Acoustic surveying
Acoustics
Artificial intelligence
Deep learning
Feature extraction
Health care
Machine learning
Pattern analysis
Pattern recognition
Signature analysis
Sound Classification
Sound sources
Surveillance
Surveys
Target recognition
Task analysis
title A Survey on Artificial Intelligence-based Acoustic Source Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%20Artificial%20Intelligence-based%20Acoustic%20Source%20Identification&rft.jtitle=IEEE%20access&rft.au=Zaheer,%20Ruba&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3283982&rft_dat=%3Cproquest_ieee_%3E2828006290%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828006290&rft_id=info:pmid/&rft_ieee_id=10146285&rft_doaj_id=oai_doaj_org_article_1f328788c0384f8392d424a0f4ec8cd2&rfr_iscdi=true