A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs

Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2023-06, Vol.41 (6), p.1-1
Hauptverfasser: Gao, Kaixuan, Wang, Huiqiang, Lv, Hongwu, Gao, Pengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE journal on selected areas in communications
container_volume 41
creator Gao, Kaixuan
Wang, Huiqiang
Lv, Hongwu
Gao, Pengfei
description Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.
doi_str_mv 10.1109/JSAC.2023.3275621
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2828004303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130727</ieee_id><sourcerecordid>2828004303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN46SXY36XFdtVUqFmo9eAlJNmlT6kaT7cG3d0t78DQ_w_fPwIfQNYERITC-e1lU9YgCZSNGeVFScoIGpChEBgDiFA2AM5YJTspzdJHSBoDkuaAD9Fnhh1mmVbINnvrVOptHa3zyocXzkHzXB9-u8Kvt1qHBvsX1Wm23tl3tt8uoVYsXxrYq-pCwCxHfFxNc18vqI12iM6e2yV4d5xAtnx7f62k2e5s819UsM3Scd5koS2OcIM5wM-aClA40WEU1V7TQzoqGaBDOMHBOmwJEaRrrirKxTEChFRui28Pd7xh-djZ1chN2se1fSiqoAMgZsJ4iB8rEkFK0Tn5H_6XiryQg9wrlXqHcK5RHhX3n5tDx1tp_PGHAKWd_8qpsRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828004303</pqid></control><display><type>article</type><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</creator><creatorcontrib>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</creatorcontrib><description>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3275621</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3GPP ; 5G mobile communication ; Accuracy ; B5G ; Cellular communication ; cellular-connected UAV ; deep learning ; high-precision positioning ; Image enhancement ; Interference ; Location awareness ; Robustness ; Signal to noise ratio ; Street canyons ; Unmanned aerial vehicles ; Wireless fidelity</subject><ispartof>IEEE journal on selected areas in communications, 2023-06, Vol.41 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</citedby><cites>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</cites><orcidid>0000-0002-1007-5589 ; 0000-0002-9426-5821 ; 0000-0002-1917-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Kaixuan</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</description><subject>3GPP</subject><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>B5G</subject><subject>Cellular communication</subject><subject>cellular-connected UAV</subject><subject>deep learning</subject><subject>high-precision positioning</subject><subject>Image enhancement</subject><subject>Interference</subject><subject>Location awareness</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Street canyons</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless fidelity</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN46SXY36XFdtVUqFmo9eAlJNmlT6kaT7cG3d0t78DQ_w_fPwIfQNYERITC-e1lU9YgCZSNGeVFScoIGpChEBgDiFA2AM5YJTspzdJHSBoDkuaAD9Fnhh1mmVbINnvrVOptHa3zyocXzkHzXB9-u8Kvt1qHBvsX1Wm23tl3tt8uoVYsXxrYq-pCwCxHfFxNc18vqI12iM6e2yV4d5xAtnx7f62k2e5s819UsM3Scd5koS2OcIM5wM-aClA40WEU1V7TQzoqGaBDOMHBOmwJEaRrrirKxTEChFRui28Pd7xh-djZ1chN2se1fSiqoAMgZsJ4iB8rEkFK0Tn5H_6XiryQg9wrlXqHcK5RHhX3n5tDx1tp_PGHAKWd_8qpsRA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Gao, Kaixuan</creator><creator>Wang, Huiqiang</creator><creator>Lv, Hongwu</creator><creator>Gao, Pengfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1007-5589</orcidid><orcidid>https://orcid.org/0000-0002-9426-5821</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid></search><sort><creationdate>20230601</creationdate><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><author>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3GPP</topic><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>B5G</topic><topic>Cellular communication</topic><topic>cellular-connected UAV</topic><topic>deep learning</topic><topic>high-precision positioning</topic><topic>Image enhancement</topic><topic>Interference</topic><topic>Location awareness</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Street canyons</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Kaixuan</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Kaixuan</au><au>Wang, Huiqiang</au><au>Lv, Hongwu</au><au>Gao, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>41</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3275621</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1007-5589</orcidid><orcidid>https://orcid.org/0000-0002-9426-5821</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2023-06, Vol.41 (6), p.1-1
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_2828004303
source IEEE Electronic Library (IEL)
subjects 3GPP
5G mobile communication
Accuracy
B5G
Cellular communication
cellular-connected UAV
deep learning
high-precision positioning
Image enhancement
Interference
Location awareness
Robustness
Signal to noise ratio
Street canyons
Unmanned aerial vehicles
Wireless fidelity
title A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DL-based%20High-Precision%20Positioning%20Method%20in%20Challenging%20Urban%20Scenarios%20for%20B5G%20CCUAVs&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Gao,%20Kaixuan&rft.date=2023-06-01&rft.volume=41&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3275621&rft_dat=%3Cproquest_RIE%3E2828004303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828004303&rft_id=info:pmid/&rft_ieee_id=10130727&rfr_iscdi=true