A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs
Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5t...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2023-06, Vol.41 (6), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE journal on selected areas in communications |
container_volume | 41 |
creator | Gao, Kaixuan Wang, Huiqiang Lv, Hongwu Gao, Pengfei |
description | Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness. |
doi_str_mv | 10.1109/JSAC.2023.3275621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2828004303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130727</ieee_id><sourcerecordid>2828004303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</originalsourceid><addsrcrecordid>eNpNkMFKAzEQhoMoWKsPIHgIeN46SXY36XFdtVUqFmo9eAlJNmlT6kaT7cG3d0t78DQ_w_fPwIfQNYERITC-e1lU9YgCZSNGeVFScoIGpChEBgDiFA2AM5YJTspzdJHSBoDkuaAD9Fnhh1mmVbINnvrVOptHa3zyocXzkHzXB9-u8Kvt1qHBvsX1Wm23tl3tt8uoVYsXxrYq-pCwCxHfFxNc18vqI12iM6e2yV4d5xAtnx7f62k2e5s819UsM3Scd5koS2OcIM5wM-aClA40WEU1V7TQzoqGaBDOMHBOmwJEaRrrirKxTEChFRui28Pd7xh-djZ1chN2se1fSiqoAMgZsJ4iB8rEkFK0Tn5H_6XiryQg9wrlXqHcK5RHhX3n5tDx1tp_PGHAKWd_8qpsRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828004303</pqid></control><display><type>article</type><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</creator><creatorcontrib>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</creatorcontrib><description>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2023.3275621</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3GPP ; 5G mobile communication ; Accuracy ; B5G ; Cellular communication ; cellular-connected UAV ; deep learning ; high-precision positioning ; Image enhancement ; Interference ; Location awareness ; Robustness ; Signal to noise ratio ; Street canyons ; Unmanned aerial vehicles ; Wireless fidelity</subject><ispartof>IEEE journal on selected areas in communications, 2023-06, Vol.41 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</citedby><cites>FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</cites><orcidid>0000-0002-1007-5589 ; 0000-0002-9426-5821 ; 0000-0002-1917-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10130727$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Kaixuan</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</description><subject>3GPP</subject><subject>5G mobile communication</subject><subject>Accuracy</subject><subject>B5G</subject><subject>Cellular communication</subject><subject>cellular-connected UAV</subject><subject>deep learning</subject><subject>high-precision positioning</subject><subject>Image enhancement</subject><subject>Interference</subject><subject>Location awareness</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Street canyons</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless fidelity</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFKAzEQhoMoWKsPIHgIeN46SXY36XFdtVUqFmo9eAlJNmlT6kaT7cG3d0t78DQ_w_fPwIfQNYERITC-e1lU9YgCZSNGeVFScoIGpChEBgDiFA2AM5YJTspzdJHSBoDkuaAD9Fnhh1mmVbINnvrVOptHa3zyocXzkHzXB9-u8Kvt1qHBvsX1Wm23tl3tt8uoVYsXxrYq-pCwCxHfFxNc18vqI12iM6e2yV4d5xAtnx7f62k2e5s819UsM3Scd5koS2OcIM5wM-aClA40WEU1V7TQzoqGaBDOMHBOmwJEaRrrirKxTEChFRui28Pd7xh-djZ1chN2se1fSiqoAMgZsJ4iB8rEkFK0Tn5H_6XiryQg9wrlXqHcK5RHhX3n5tDx1tp_PGHAKWd_8qpsRA</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Gao, Kaixuan</creator><creator>Wang, Huiqiang</creator><creator>Lv, Hongwu</creator><creator>Gao, Pengfei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1007-5589</orcidid><orcidid>https://orcid.org/0000-0002-9426-5821</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid></search><sort><creationdate>20230601</creationdate><title>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</title><author>Gao, Kaixuan ; Wang, Huiqiang ; Lv, Hongwu ; Gao, Pengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-866ccf81fc7c97816f0b0ea2b7a25bfe8d1b08fc30ffbc5086cdef56de3805ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3GPP</topic><topic>5G mobile communication</topic><topic>Accuracy</topic><topic>B5G</topic><topic>Cellular communication</topic><topic>cellular-connected UAV</topic><topic>deep learning</topic><topic>high-precision positioning</topic><topic>Image enhancement</topic><topic>Interference</topic><topic>Location awareness</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Street canyons</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Kaixuan</creatorcontrib><creatorcontrib>Wang, Huiqiang</creatorcontrib><creatorcontrib>Lv, Hongwu</creatorcontrib><creatorcontrib>Gao, Pengfei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Kaixuan</au><au>Wang, Huiqiang</au><au>Lv, Hongwu</au><au>Gao, Pengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>41</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Unmanned aerial vehicles (UAVs) facilitate services in civilian and industrial fields but suffer from a limited direct link operating range and unreliable satellite positioning in urban canyons. Fortunately, cellular-connected UAVs (CCUAVs) overcome these shortcomings, benefitting from the beyond 5th generation (B5G) network's city-level coverage and high-precision positioning capabilities , and are considered a paradigm of 5G-advanced and beyond. However, in a challenging airspace (e.g., urban canyon), the CCUAV localization accuracy deteriorates due to low signal-to-interference-plus-noise (SINR) air-ground channels and strong multipath effects . To solve these problems, we first construct channel amplitude-phase response (CAPR) images to characterize the cellular channel in a challenging airspace for CCUAV positioning. In particular, the effect of down-tilted antennas and high-dimensional channel features are embedded into CAPR images, to meet the relevant cellular communication criteria. Subsequently, a deep learning (DL) model, the scale-shared quarter network (SSQ-Net), is devised for CAPR image-based positioning, along with a robustness enhancement method. With this method, the multipath effects and interference in challenging environments are exploited to improve positioning accuracy and robustness, instead of being treated as detriments. Finally, the experimental results in a typical urban canyon show that our method outperforms state-of-the-art methods in terms of accuracy and robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2023.3275621</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1007-5589</orcidid><orcidid>https://orcid.org/0000-0002-9426-5821</orcidid><orcidid>https://orcid.org/0000-0002-1917-3978</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2023-06, Vol.41 (6), p.1-1 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_proquest_journals_2828004303 |
source | IEEE Electronic Library (IEL) |
subjects | 3GPP 5G mobile communication Accuracy B5G Cellular communication cellular-connected UAV deep learning high-precision positioning Image enhancement Interference Location awareness Robustness Signal to noise ratio Street canyons Unmanned aerial vehicles Wireless fidelity |
title | A DL-based High-Precision Positioning Method in Challenging Urban Scenarios for B5G CCUAVs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20DL-based%20High-Precision%20Positioning%20Method%20in%20Challenging%20Urban%20Scenarios%20for%20B5G%20CCUAVs&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Gao,%20Kaixuan&rft.date=2023-06-01&rft.volume=41&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2023.3275621&rft_dat=%3Cproquest_RIE%3E2828004303%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828004303&rft_id=info:pmid/&rft_ieee_id=10130727&rfr_iscdi=true |