TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis

Streaming applications have become one of the key application domains for high-level synthesis (HLS) tools. For a streaming application, there is a potential to simplify the control logic by regulating each task with a stream of input and output data. This is called free-running optimization. But it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2023-07, Vol.42 (7), p.2423-2427
Hauptverfasser: Choi, Young-Kyu, Chi, Yuze, Lau, Jason, Cong, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2427
container_issue 7
container_start_page 2423
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 42
creator Choi, Young-Kyu
Chi, Yuze
Lau, Jason
Cong, Jason
description Streaming applications have become one of the key application domains for high-level synthesis (HLS) tools. For a streaming application, there is a potential to simplify the control logic by regulating each task with a stream of input and output data. This is called free-running optimization. But it is difficult to understand when such optimization can be applied without changing the functionality of the original design. Moreover, it takes a large effort to manually apply the optimization across legacy codes. In this article, we present the TARO framework which automatically applies the free-running optimization on HLS-based streaming applications. TARO simplifies the control logic without degrading the clock frequency or the performance. Experiments on Alveo U250 shows that we can obtain an average of 16% LUT and 45% FF reduction for streaming-based systolic array designs.
doi_str_mv 10.1109/TCAD.2022.3216544
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2828000450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9926183</ieee_id><sourcerecordid>2828000450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-130646afd72ce233d3dc21560e3a54562d7818a2f9413314af8374ad39ab51213</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hvbfttvq2oICRBIP43NStgxLosN1M8NcLwfh0z8N3zk0-Qm6BDQCYelgMi6cBMsQBR0ilEGekB4pniQAJ56THMMsTxjJ2Sa5iXDMGQqLqkfmimM8eadG1zda0rqSzXeu27ueQG0_rJtBRsDaZd947v6SvNni7idR5OnobF3Tilqtkar_thr7vfbuy0cVrclGbTbQ3f7dPPkbPi-Ekmc7GL8NimpSoeJsAZ6lITV1lWFrkvOJViSBTZrmRQqZYZTnkBmslgHMQps55JkzFlfmUgMD75P60uwvNV2djq9dNF_zhpcYcc8aYkOxAwYkqQxNjsLXeBbc1Ya-B6aM6fVSnj-r0n7pD5-7Ucdbaf14pTCHn_Bfrk2eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828000450</pqid></control><display><type>article</type><title>TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Choi, Young-Kyu ; Chi, Yuze ; Lau, Jason ; Cong, Jason</creator><creatorcontrib>Choi, Young-Kyu ; Chi, Yuze ; Lau, Jason ; Cong, Jason</creatorcontrib><description>Streaming applications have become one of the key application domains for high-level synthesis (HLS) tools. For a streaming application, there is a potential to simplify the control logic by regulating each task with a stream of input and output data. This is called free-running optimization. But it is difficult to understand when such optimization can be applied without changing the functionality of the original design. Moreover, it takes a large effort to manually apply the optimization across legacy codes. In this article, we present the TARO framework which automatically applies the free-running optimization on HLS-based streaming applications. TARO simplifies the control logic without degrading the clock frequency or the performance. Experiments on Alveo U250 shows that we can obtain an average of 16% LUT and 45% FF reduction for streaming-based systolic array designs.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2022.3216544</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Field programmable gate arrays ; Field programmable gate arrays (FPGA) ; free running optimization ; High level synthesis ; high level synthesis (HLS) ; Kernel ; Lenses ; Optimization ; Pipelines ; Task analysis</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2023-07, Vol.42 (7), p.2423-2427</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-130646afd72ce233d3dc21560e3a54562d7818a2f9413314af8374ad39ab51213</citedby><cites>FETCH-LOGICAL-c293t-130646afd72ce233d3dc21560e3a54562d7818a2f9413314af8374ad39ab51213</cites><orcidid>0000-0001-5829-4425 ; 0000-0002-5885-0425 ; 0000-0003-2887-6963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9926183$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9926183$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Choi, Young-Kyu</creatorcontrib><creatorcontrib>Chi, Yuze</creatorcontrib><creatorcontrib>Lau, Jason</creatorcontrib><creatorcontrib>Cong, Jason</creatorcontrib><title>TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Streaming applications have become one of the key application domains for high-level synthesis (HLS) tools. For a streaming application, there is a potential to simplify the control logic by regulating each task with a stream of input and output data. This is called free-running optimization. But it is difficult to understand when such optimization can be applied without changing the functionality of the original design. Moreover, it takes a large effort to manually apply the optimization across legacy codes. In this article, we present the TARO framework which automatically applies the free-running optimization on HLS-based streaming applications. TARO simplifies the control logic without degrading the clock frequency or the performance. Experiments on Alveo U250 shows that we can obtain an average of 16% LUT and 45% FF reduction for streaming-based systolic array designs.</description><subject>Codes</subject><subject>Field programmable gate arrays</subject><subject>Field programmable gate arrays (FPGA)</subject><subject>free running optimization</subject><subject>High level synthesis</subject><subject>high level synthesis (HLS)</subject><subject>Kernel</subject><subject>Lenses</subject><subject>Optimization</subject><subject>Pipelines</subject><subject>Task analysis</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hvbfttvq2oICRBIP43NStgxLosN1M8NcLwfh0z8N3zk0-Qm6BDQCYelgMi6cBMsQBR0ilEGekB4pniQAJ56THMMsTxjJ2Sa5iXDMGQqLqkfmimM8eadG1zda0rqSzXeu27ueQG0_rJtBRsDaZd947v6SvNni7idR5OnobF3Tilqtkar_thr7vfbuy0cVrclGbTbQ3f7dPPkbPi-Ekmc7GL8NimpSoeJsAZ6lITV1lWFrkvOJViSBTZrmRQqZYZTnkBmslgHMQps55JkzFlfmUgMD75P60uwvNV2djq9dNF_zhpcYcc8aYkOxAwYkqQxNjsLXeBbc1Ya-B6aM6fVSnj-r0n7pD5-7Ucdbaf14pTCHn_Bfrk2eQ</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Choi, Young-Kyu</creator><creator>Chi, Yuze</creator><creator>Lau, Jason</creator><creator>Cong, Jason</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5829-4425</orcidid><orcidid>https://orcid.org/0000-0002-5885-0425</orcidid><orcidid>https://orcid.org/0000-0003-2887-6963</orcidid></search><sort><creationdate>20230701</creationdate><title>TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis</title><author>Choi, Young-Kyu ; Chi, Yuze ; Lau, Jason ; Cong, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-130646afd72ce233d3dc21560e3a54562d7818a2f9413314af8374ad39ab51213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Codes</topic><topic>Field programmable gate arrays</topic><topic>Field programmable gate arrays (FPGA)</topic><topic>free running optimization</topic><topic>High level synthesis</topic><topic>high level synthesis (HLS)</topic><topic>Kernel</topic><topic>Lenses</topic><topic>Optimization</topic><topic>Pipelines</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Young-Kyu</creatorcontrib><creatorcontrib>Chi, Yuze</creatorcontrib><creatorcontrib>Lau, Jason</creatorcontrib><creatorcontrib>Cong, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Choi, Young-Kyu</au><au>Chi, Yuze</au><au>Lau, Jason</au><au>Cong, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>42</volume><issue>7</issue><spage>2423</spage><epage>2427</epage><pages>2423-2427</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Streaming applications have become one of the key application domains for high-level synthesis (HLS) tools. For a streaming application, there is a potential to simplify the control logic by regulating each task with a stream of input and output data. This is called free-running optimization. But it is difficult to understand when such optimization can be applied without changing the functionality of the original design. Moreover, it takes a large effort to manually apply the optimization across legacy codes. In this article, we present the TARO framework which automatically applies the free-running optimization on HLS-based streaming applications. TARO simplifies the control logic without degrading the clock frequency or the performance. Experiments on Alveo U250 shows that we can obtain an average of 16% LUT and 45% FF reduction for streaming-based systolic array designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2022.3216544</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5829-4425</orcidid><orcidid>https://orcid.org/0000-0002-5885-0425</orcidid><orcidid>https://orcid.org/0000-0003-2887-6963</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2023-07, Vol.42 (7), p.2423-2427
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2828000450
source IEEE Electronic Library (IEL)
subjects Codes
Field programmable gate arrays
Field programmable gate arrays (FPGA)
free running optimization
High level synthesis
high level synthesis (HLS)
Kernel
Lenses
Optimization
Pipelines
Task analysis
title TARO: Automatic Optimization for Free-Running Kernels in FPGA High-Level Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TARO:%20Automatic%20Optimization%20for%20Free-Running%20Kernels%20in%20FPGA%20High-Level%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Choi,%20Young-Kyu&rft.date=2023-07-01&rft.volume=42&rft.issue=7&rft.spage=2423&rft.epage=2427&rft.pages=2423-2427&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2022.3216544&rft_dat=%3Cproquest_RIE%3E2828000450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828000450&rft_id=info:pmid/&rft_ieee_id=9926183&rfr_iscdi=true