Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads
The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static a...
Gespeichert in:
Veröffentlicht in: | Strength of materials 2023-03, Vol.55 (2), p.265-276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 2 |
container_start_page | 265 |
container_title | Strength of materials |
container_volume | 55 |
creator | Lugovyi, P. Z. Gaidaichuk, V. V. Orlenko, S. P. Kotenko, K. E. |
description | The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed. |
doi_str_mv | 10.1007/s11223-023-00521-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2827963412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A753892294</galeid><sourcerecordid>A753892294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoZu0f6AnQU89KNGHtZaPS9I0Cwst3fQsFGm0VrCtrWST7L-vjAMhlyBGYkbPqxnxIvSV0UtGaX2VGeNcEDoHlZwR9QGtmKwFaQSXZ2hFqWgIF2z9CZ3n_EgpVUyoFYo3p8H0wWYcPd7kU9_DmILF920CIDtzgoTvoA_52EKpmw7vW-i6jJ_C2GKDb0K2CUYg26GNfTzAAHHK-DZ0XVH-HVzZf09dBod30bj8GX30pqRfXs4LtL_9cX99R3a_fm6vNztiRSVG4h5EBWvnJVe1t5R74SpnGDWV54bKRj5AzawysgHnjLSuqlRdriVv5FqJC_RtefWY4r8J8qgf45SG0lBzxetmLSrGC3W5UAfTgQ6Dj2MytixXPmzjAD6U-qaWQjWcN1URfH8jKMwIz-PBTDnr7f7PW5YvrE0x5wReH1PoTTppRvXsmV4803SO2TM9zy0WUS7wcID0Ovc7qv9vTplN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827963412</pqid></control><display><type>article</type><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><source>SpringerLink Journals</source><creator>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</creator><creatorcontrib>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</creatorcontrib><description>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-023-00521-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Boundary conditions ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Equations of motion ; Fillers ; Finite element method ; Hemispherical shells ; Kinematics ; Materials Science ; Mathematical models ; Mechanical properties ; Solid Mechanics ; Spherical shells ; Strain</subject><ispartof>Strength of materials, 2023-03, Vol.55 (2), p.265-276</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-023-00521-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-023-00521-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lugovyi, P. Z.</creatorcontrib><creatorcontrib>Gaidaichuk, V. V.</creatorcontrib><creatorcontrib>Orlenko, S. P.</creatorcontrib><creatorcontrib>Kotenko, K. E.</creatorcontrib><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</description><subject>Asymmetry</subject><subject>Boundary conditions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Equations of motion</subject><subject>Fillers</subject><subject>Finite element method</subject><subject>Hemispherical shells</subject><subject>Kinematics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Solid Mechanics</subject><subject>Spherical shells</subject><subject>Strain</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoZu0f6AnQU89KNGHtZaPS9I0Cwst3fQsFGm0VrCtrWST7L-vjAMhlyBGYkbPqxnxIvSV0UtGaX2VGeNcEDoHlZwR9QGtmKwFaQSXZ2hFqWgIF2z9CZ3n_EgpVUyoFYo3p8H0wWYcPd7kU9_DmILF920CIDtzgoTvoA_52EKpmw7vW-i6jJ_C2GKDb0K2CUYg26GNfTzAAHHK-DZ0XVH-HVzZf09dBod30bj8GX30pqRfXs4LtL_9cX99R3a_fm6vNztiRSVG4h5EBWvnJVe1t5R74SpnGDWV54bKRj5AzawysgHnjLSuqlRdriVv5FqJC_RtefWY4r8J8qgf45SG0lBzxetmLSrGC3W5UAfTgQ6Dj2MytixXPmzjAD6U-qaWQjWcN1URfH8jKMwIz-PBTDnr7f7PW5YvrE0x5wReH1PoTTppRvXsmV4803SO2TM9zy0WUS7wcID0Ovc7qv9vTplN</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lugovyi, P. Z.</creator><creator>Gaidaichuk, V. V.</creator><creator>Orlenko, S. P.</creator><creator>Kotenko, K. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230301</creationdate><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><author>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>Boundary conditions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Equations of motion</topic><topic>Fillers</topic><topic>Finite element method</topic><topic>Hemispherical shells</topic><topic>Kinematics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Solid Mechanics</topic><topic>Spherical shells</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lugovyi, P. Z.</creatorcontrib><creatorcontrib>Gaidaichuk, V. V.</creatorcontrib><creatorcontrib>Orlenko, S. P.</creatorcontrib><creatorcontrib>Kotenko, K. E.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lugovyi, P. Z.</au><au>Gaidaichuk, V. V.</au><au>Orlenko, S. P.</au><au>Kotenko, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>265</spage><epage>276</epage><pages>265-276</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-023-00521-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2316 |
ispartof | Strength of materials, 2023-03, Vol.55 (2), p.265-276 |
issn | 0039-2316 1573-9325 |
language | eng |
recordid | cdi_proquest_journals_2827963412 |
source | SpringerLink Journals |
subjects | Asymmetry Boundary conditions Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Equations of motion Fillers Finite element method Hemispherical shells Kinematics Materials Science Mathematical models Mechanical properties Solid Mechanics Spherical shells Strain |
title | Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Asymmetric%20Three-Layer%20Hemispherical%20Shells%20with%20a%20Discrete-Inhomogeneous%20Filler%20Under%20Pulsed%20Loads&rft.jtitle=Strength%20of%20materials&rft.au=Lugovyi,%20P.%20Z.&rft.date=2023-03-01&rft.volume=55&rft.issue=2&rft.spage=265&rft.epage=276&rft.pages=265-276&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-023-00521-8&rft_dat=%3Cgale_proqu%3EA753892294%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827963412&rft_id=info:pmid/&rft_galeid=A753892294&rfr_iscdi=true |