Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads

The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strength of materials 2023-03, Vol.55 (2), p.265-276
Hauptverfasser: Lugovyi, P. Z., Gaidaichuk, V. V., Orlenko, S. P., Kotenko, K. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 265
container_title Strength of materials
container_volume 55
creator Lugovyi, P. Z.
Gaidaichuk, V. V.
Orlenko, S. P.
Kotenko, K. E.
description The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.
doi_str_mv 10.1007/s11223-023-00521-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2827963412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A753892294</galeid><sourcerecordid>A753892294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVJoZu0f6AnQU89KNGHtZaPS9I0Cwst3fQsFGm0VrCtrWST7L-vjAMhlyBGYkbPqxnxIvSV0UtGaX2VGeNcEDoHlZwR9QGtmKwFaQSXZ2hFqWgIF2z9CZ3n_EgpVUyoFYo3p8H0wWYcPd7kU9_DmILF920CIDtzgoTvoA_52EKpmw7vW-i6jJ_C2GKDb0K2CUYg26GNfTzAAHHK-DZ0XVH-HVzZf09dBod30bj8GX30pqRfXs4LtL_9cX99R3a_fm6vNztiRSVG4h5EBWvnJVe1t5R74SpnGDWV54bKRj5AzawysgHnjLSuqlRdriVv5FqJC_RtefWY4r8J8qgf45SG0lBzxetmLSrGC3W5UAfTgQ6Dj2MytixXPmzjAD6U-qaWQjWcN1URfH8jKMwIz-PBTDnr7f7PW5YvrE0x5wReH1PoTTppRvXsmV4803SO2TM9zy0WUS7wcID0Ovc7qv9vTplN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827963412</pqid></control><display><type>article</type><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><source>SpringerLink Journals</source><creator>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</creator><creatorcontrib>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</creatorcontrib><description>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</description><identifier>ISSN: 0039-2316</identifier><identifier>EISSN: 1573-9325</identifier><identifier>DOI: 10.1007/s11223-023-00521-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymmetry ; Boundary conditions ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Equations of motion ; Fillers ; Finite element method ; Hemispherical shells ; Kinematics ; Materials Science ; Mathematical models ; Mechanical properties ; Solid Mechanics ; Spherical shells ; Strain</subject><ispartof>Strength of materials, 2023-03, Vol.55 (2), p.265-276</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11223-023-00521-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11223-023-00521-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lugovyi, P. Z.</creatorcontrib><creatorcontrib>Gaidaichuk, V. V.</creatorcontrib><creatorcontrib>Orlenko, S. P.</creatorcontrib><creatorcontrib>Kotenko, K. E.</creatorcontrib><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><title>Strength of materials</title><addtitle>Strength Mater</addtitle><description>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</description><subject>Asymmetry</subject><subject>Boundary conditions</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Equations of motion</subject><subject>Fillers</subject><subject>Finite element method</subject><subject>Hemispherical shells</subject><subject>Kinematics</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Solid Mechanics</subject><subject>Spherical shells</subject><subject>Strain</subject><issn>0039-2316</issn><issn>1573-9325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVJoZu0f6AnQU89KNGHtZaPS9I0Cwst3fQsFGm0VrCtrWST7L-vjAMhlyBGYkbPqxnxIvSV0UtGaX2VGeNcEDoHlZwR9QGtmKwFaQSXZ2hFqWgIF2z9CZ3n_EgpVUyoFYo3p8H0wWYcPd7kU9_DmILF920CIDtzgoTvoA_52EKpmw7vW-i6jJ_C2GKDb0K2CUYg26GNfTzAAHHK-DZ0XVH-HVzZf09dBod30bj8GX30pqRfXs4LtL_9cX99R3a_fm6vNztiRSVG4h5EBWvnJVe1t5R74SpnGDWV54bKRj5AzawysgHnjLSuqlRdriVv5FqJC_RtefWY4r8J8qgf45SG0lBzxetmLSrGC3W5UAfTgQ6Dj2MytixXPmzjAD6U-qaWQjWcN1URfH8jKMwIz-PBTDnr7f7PW5YvrE0x5wReH1PoTTppRvXsmV4803SO2TM9zy0WUS7wcID0Ovc7qv9vTplN</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Lugovyi, P. Z.</creator><creator>Gaidaichuk, V. V.</creator><creator>Orlenko, S. P.</creator><creator>Kotenko, K. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20230301</creationdate><title>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</title><author>Lugovyi, P. Z. ; Gaidaichuk, V. V. ; Orlenko, S. P. ; Kotenko, K. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-db34e6df5287fc02f3d4da10a4f2a0595be71c8a59edda5cd448710a5295683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>Boundary conditions</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Equations of motion</topic><topic>Fillers</topic><topic>Finite element method</topic><topic>Hemispherical shells</topic><topic>Kinematics</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Solid Mechanics</topic><topic>Spherical shells</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lugovyi, P. Z.</creatorcontrib><creatorcontrib>Gaidaichuk, V. V.</creatorcontrib><creatorcontrib>Orlenko, S. P.</creatorcontrib><creatorcontrib>Kotenko, K. E.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Strength of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lugovyi, P. Z.</au><au>Gaidaichuk, V. V.</au><au>Orlenko, S. P.</au><au>Kotenko, K. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads</atitle><jtitle>Strength of materials</jtitle><stitle>Strength Mater</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>55</volume><issue>2</issue><spage>265</spage><epage>276</epage><pages>265-276</pages><issn>0039-2316</issn><eissn>1573-9325</eissn><abstract>The paper deals with the dynamics of asymmetric three-layer hemispherical shells with the discretely symmetric lightweight, rib-reinforced filler under pulsed loads. Since the distances between the ribs are much larger than the dimensions of the rib cross-sections, the theory of independent static and kinematic hypotheses for each layer is applied. In asymmetric shells, the load-bearing layers are made of different materials and have various thicknesses. The equations of motion of asymmetric three-layer spherical shells and natural boundary conditions are obtained using the Hamilton– Ostrogradsky variational principle for the Timoshenko-type shell and rod theory model. This makes it possible to develop an adequate finite element model for asymmetric three-layer shells composed of several materials and obtain numerical results on the dynamic behavior of an asymmetric three-layer elastic structure using the finite element method. The influence of physical and mechanical parameters of asymmetric layers of hemispherical shells on the stress-strain state under axisymmetric internal pulse loading is investigated. New mechanical effects are revealed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11223-023-00521-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-2316
ispartof Strength of materials, 2023-03, Vol.55 (2), p.265-276
issn 0039-2316
1573-9325
language eng
recordid cdi_proquest_journals_2827963412
source SpringerLink Journals
subjects Asymmetry
Boundary conditions
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Equations of motion
Fillers
Finite element method
Hemispherical shells
Kinematics
Materials Science
Mathematical models
Mechanical properties
Solid Mechanics
Spherical shells
Strain
title Dynamics of Asymmetric Three-Layer Hemispherical Shells with a Discrete-Inhomogeneous Filler Under Pulsed Loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20Asymmetric%20Three-Layer%20Hemispherical%20Shells%20with%20a%20Discrete-Inhomogeneous%20Filler%20Under%20Pulsed%20Loads&rft.jtitle=Strength%20of%20materials&rft.au=Lugovyi,%20P.%20Z.&rft.date=2023-03-01&rft.volume=55&rft.issue=2&rft.spage=265&rft.epage=276&rft.pages=265-276&rft.issn=0039-2316&rft.eissn=1573-9325&rft_id=info:doi/10.1007/s11223-023-00521-8&rft_dat=%3Cgale_proqu%3EA753892294%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827963412&rft_id=info:pmid/&rft_galeid=A753892294&rfr_iscdi=true