Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks

Geomechanical modeling of the fracturing process accounts for the physical factors that inform the propagation and termination of the fractures. However, the resultant models may not honor the fracture statistics derived from auxiliary sources such as outcrop images. Stochastic algorithms, on the ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2023-07, Vol.55 (5), p.645-671
Hauptverfasser: Chandna, Akshat, Srinivasan, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 5
container_start_page 645
container_title Mathematical geosciences
container_volume 55
creator Chandna, Akshat
Srinivasan, Sanjay
description Geomechanical modeling of the fracturing process accounts for the physical factors that inform the propagation and termination of the fractures. However, the resultant models may not honor the fracture statistics derived from auxiliary sources such as outcrop images. Stochastic algorithms, on the other hand, generate natural fracture maps based purely on statistical inferences from outcrop images excluding the effects of any physical processes guiding the propagation and termination of fractures. This paper, therefore, focuses on presenting a methodology for combining information from geomechanical and stochastic approaches necessary to obtain a fracture modeling approach that is geologically realistic as well as consistent with the geomechanical conditions for fracture propagation. As a prerequisite for this integration approach, a multi-point statistics-based stochastic simulation algorithm is implemented that yields the probability of fracture propagation along various paths. The application and effectiveness of this probability integration paradigm are demonstrated on a synthetic fracture set.
doi_str_mv 10.1007/s11004-022-10041-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2827963219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827963219</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-225e7945f09867a45f801669fb37bee5c59450b5ebf5d9c03c4de62b65a1ce573</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBH7CRHVNFSqRQOcLYcd1NSWjvYrih_j0MQ3DjNaOex0iB0Sck1JaS4CTRBnhHGsp7Q7HCERrQs8qysBD_-5ZKeorMQNoRIygUdIfvkXa3rdtuG2Bo8txHWXsfWWewaPAO3A_OqbWv0Fmu76i8hJr13p9PcNuDBGgi4cR4_6K5r7Rovddz7JE-9NokBXkL8cP4tnKOTRm8DXPzgGL1M754n99nicTaf3C4yzXMWM8YEFFUuGlKVstCJlIRKWTU1L2oAYUQSSS2gbsSqMoSbfAWS1VJoakAUfIyuht7Ou_c9hKg2bu9teqlYyYpKckar5GKDy3gXgodGdb7daf-pKFH9rmrYVaVd1feu6pBCfAiFZLZr8H_V_6S-AIIIfSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827963219</pqid></control><display><type>article</type><title>Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks</title><source>SpringerNature Journals</source><creator>Chandna, Akshat ; Srinivasan, Sanjay</creator><creatorcontrib>Chandna, Akshat ; Srinivasan, Sanjay</creatorcontrib><description>Geomechanical modeling of the fracturing process accounts for the physical factors that inform the propagation and termination of the fractures. However, the resultant models may not honor the fracture statistics derived from auxiliary sources such as outcrop images. Stochastic algorithms, on the other hand, generate natural fracture maps based purely on statistical inferences from outcrop images excluding the effects of any physical processes guiding the propagation and termination of fractures. This paper, therefore, focuses on presenting a methodology for combining information from geomechanical and stochastic approaches necessary to obtain a fracture modeling approach that is geologically realistic as well as consistent with the geomechanical conditions for fracture propagation. As a prerequisite for this integration approach, a multi-point statistics-based stochastic simulation algorithm is implemented that yields the probability of fracture propagation along various paths. The application and effectiveness of this probability integration paradigm are demonstrated on a synthetic fracture set.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-022-10041-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Computer Science ; Crack propagation ; Earth and Environmental Science ; Earth Sciences ; Fracture mechanics ; Geomechanics ; Geostatistics ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Integration ; Modelling ; Outcrops ; Physical factors ; Physics ; Probability theory ; Special Issue ; Statistical analysis ; Statistical methods ; Statistics ; Statistics for Engineering ; Stochasticity</subject><ispartof>Mathematical geosciences, 2023-07, Vol.55 (5), p.645-671</ispartof><rights>International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-225e7945f09867a45f801669fb37bee5c59450b5ebf5d9c03c4de62b65a1ce573</citedby><cites>FETCH-LOGICAL-a342t-225e7945f09867a45f801669fb37bee5c59450b5ebf5d9c03c4de62b65a1ce573</cites><orcidid>0000-0002-6876-0490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-022-10041-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-022-10041-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chandna, Akshat</creatorcontrib><creatorcontrib>Srinivasan, Sanjay</creatorcontrib><title>Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Geomechanical modeling of the fracturing process accounts for the physical factors that inform the propagation and termination of the fractures. However, the resultant models may not honor the fracture statistics derived from auxiliary sources such as outcrop images. Stochastic algorithms, on the other hand, generate natural fracture maps based purely on statistical inferences from outcrop images excluding the effects of any physical processes guiding the propagation and termination of fractures. This paper, therefore, focuses on presenting a methodology for combining information from geomechanical and stochastic approaches necessary to obtain a fracture modeling approach that is geologically realistic as well as consistent with the geomechanical conditions for fracture propagation. As a prerequisite for this integration approach, a multi-point statistics-based stochastic simulation algorithm is implemented that yields the probability of fracture propagation along various paths. The application and effectiveness of this probability integration paradigm are demonstrated on a synthetic fracture set.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Crack propagation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fracture mechanics</subject><subject>Geomechanics</subject><subject>Geostatistics</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Integration</subject><subject>Modelling</subject><subject>Outcrops</subject><subject>Physical factors</subject><subject>Physics</subject><subject>Probability theory</subject><subject>Special Issue</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Statistics for Engineering</subject><subject>Stochasticity</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEOeBH7CRHVNFSqRQOcLYcd1NSWjvYrih_j0MQ3DjNaOex0iB0Sck1JaS4CTRBnhHGsp7Q7HCERrQs8qysBD_-5ZKeorMQNoRIygUdIfvkXa3rdtuG2Bo8txHWXsfWWewaPAO3A_OqbWv0Fmu76i8hJr13p9PcNuDBGgi4cR4_6K5r7Rovddz7JE-9NokBXkL8cP4tnKOTRm8DXPzgGL1M754n99nicTaf3C4yzXMWM8YEFFUuGlKVstCJlIRKWTU1L2oAYUQSSS2gbsSqMoSbfAWS1VJoakAUfIyuht7Ou_c9hKg2bu9teqlYyYpKckar5GKDy3gXgodGdb7daf-pKFH9rmrYVaVd1feu6pBCfAiFZLZr8H_V_6S-AIIIfSY</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Chandna, Akshat</creator><creator>Srinivasan, Sanjay</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6876-0490</orcidid></search><sort><creationdate>20230701</creationdate><title>Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks</title><author>Chandna, Akshat ; Srinivasan, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-225e7945f09867a45f801669fb37bee5c59450b5ebf5d9c03c4de62b65a1ce573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Crack propagation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fracture mechanics</topic><topic>Geomechanics</topic><topic>Geostatistics</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Integration</topic><topic>Modelling</topic><topic>Outcrops</topic><topic>Physical factors</topic><topic>Physics</topic><topic>Probability theory</topic><topic>Special Issue</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Statistics for Engineering</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandna, Akshat</creatorcontrib><creatorcontrib>Srinivasan, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandna, Akshat</au><au>Srinivasan, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>55</volume><issue>5</issue><spage>645</spage><epage>671</epage><pages>645-671</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Geomechanical modeling of the fracturing process accounts for the physical factors that inform the propagation and termination of the fractures. However, the resultant models may not honor the fracture statistics derived from auxiliary sources such as outcrop images. Stochastic algorithms, on the other hand, generate natural fracture maps based purely on statistical inferences from outcrop images excluding the effects of any physical processes guiding the propagation and termination of fractures. This paper, therefore, focuses on presenting a methodology for combining information from geomechanical and stochastic approaches necessary to obtain a fracture modeling approach that is geologically realistic as well as consistent with the geomechanical conditions for fracture propagation. As a prerequisite for this integration approach, a multi-point statistics-based stochastic simulation algorithm is implemented that yields the probability of fracture propagation along various paths. The application and effectiveness of this probability integration paradigm are demonstrated on a synthetic fracture set.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-022-10041-x</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-6876-0490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2023-07, Vol.55 (5), p.645-671
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_journals_2827963219
source SpringerNature Journals
subjects Algorithms
Chemistry and Earth Sciences
Computer Science
Crack propagation
Earth and Environmental Science
Earth Sciences
Fracture mechanics
Geomechanics
Geostatistics
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Integration
Modelling
Outcrops
Physical factors
Physics
Probability theory
Special Issue
Statistical analysis
Statistical methods
Statistics
Statistics for Engineering
Stochasticity
title Probabilistic Integration of Geomechanical and Geostatistical Inferences for Mapping Natural Fracture Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Integration%20of%20Geomechanical%20and%20Geostatistical%20Inferences%20for%20Mapping%20Natural%20Fracture%20Networks&rft.jtitle=Mathematical%20geosciences&rft.au=Chandna,%20Akshat&rft.date=2023-07-01&rft.volume=55&rft.issue=5&rft.spage=645&rft.epage=671&rft.pages=645-671&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-022-10041-x&rft_dat=%3Cproquest_cross%3E2827963219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827963219&rft_id=info:pmid/&rfr_iscdi=true