Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach
Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large datase...
Gespeichert in:
Veröffentlicht in: | Arabian journal for science and engineering (2011) 2023-07, Vol.48 (7), p.9329-9338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9338 |
---|---|
container_issue | 7 |
container_start_page | 9329 |
container_title | Arabian journal for science and engineering (2011) |
container_volume | 48 |
creator | Dubey, Richa Guruviah, Velmathi |
description | Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204. |
doi_str_mv | 10.1007/s13369-022-07346-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2827962755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827962755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwNOC52j-bLLJsZZqhYoerHgL2exsG9nu1mQr-O3NdgVvnmb4zXszzEPoipIbSkhxGynnUmPCGCYFzyVWJ2jCqKY4Z4qeHnuOhSzez9E0Rl-SXHEtKOUTZF4CVN71_guyp66CxrebrKuzpd9sIWRLsP1A3mxzgIHf-W5nY8zWccCLNsKubJLVuq1vIVuBDe0wme33oUvwEp3Vtokw_a0XaH2_eJ0v8er54XE-W2HHqe4xE1pUUijqHNVW1GUloXB5JZQEnZ6yRDNwlkPJKVCQVAFjpUhYEldUNb9A1-PedPbzALE3H90htOmkYYoVWrJCiKRio8qFLsYAtdkHv7Ph21BihizNmKVJWZpjlkYlEx9NMYnbDYS_1f-4fgC1knbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827962755</pqid></control><display><type>article</type><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dubey, Richa ; Guruviah, Velmathi</creator><creatorcontrib>Dubey, Richa ; Guruviah, Velmathi</creatorcontrib><description>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-022-07346-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bagging ; Biomass ; Calorific value ; Classifiers ; Correlation coefficients ; Engineering ; Humanities and Social Sciences ; Machine learning ; multidisciplinary ; Multilayer perceptrons ; Optimization ; Prediction models ; Research Article-Petroleum Engineering ; Science</subject><ispartof>Arabian journal for science and engineering (2011), 2023-07, Vol.48 (7), p.9329-9338</ispartof><rights>King Fahd University of Petroleum & Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</citedby><cites>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</cites><orcidid>0000-0001-8173-2796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-022-07346-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-022-07346-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dubey, Richa</creatorcontrib><creatorcontrib>Guruviah, Velmathi</creatorcontrib><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</description><subject>Algorithms</subject><subject>Bagging</subject><subject>Biomass</subject><subject>Calorific value</subject><subject>Classifiers</subject><subject>Correlation coefficients</subject><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Multilayer perceptrons</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Research Article-Petroleum Engineering</subject><subject>Science</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwNOC52j-bLLJsZZqhYoerHgL2exsG9nu1mQr-O3NdgVvnmb4zXszzEPoipIbSkhxGynnUmPCGCYFzyVWJ2jCqKY4Z4qeHnuOhSzez9E0Rl-SXHEtKOUTZF4CVN71_guyp66CxrebrKuzpd9sIWRLsP1A3mxzgIHf-W5nY8zWccCLNsKubJLVuq1vIVuBDe0wme33oUvwEp3Vtokw_a0XaH2_eJ0v8er54XE-W2HHqe4xE1pUUijqHNVW1GUloXB5JZQEnZ6yRDNwlkPJKVCQVAFjpUhYEldUNb9A1-PedPbzALE3H90htOmkYYoVWrJCiKRio8qFLsYAtdkHv7Ph21BihizNmKVJWZpjlkYlEx9NMYnbDYS_1f-4fgC1knbe</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Dubey, Richa</creator><creator>Guruviah, Velmathi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8173-2796</orcidid></search><sort><creationdate>20230701</creationdate><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><author>Dubey, Richa ; Guruviah, Velmathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bagging</topic><topic>Biomass</topic><topic>Calorific value</topic><topic>Classifiers</topic><topic>Correlation coefficients</topic><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Multilayer perceptrons</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Research Article-Petroleum Engineering</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubey, Richa</creatorcontrib><creatorcontrib>Guruviah, Velmathi</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubey, Richa</au><au>Guruviah, Velmathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>48</volume><issue>7</issue><spage>9329</spage><epage>9338</epage><pages>9329-9338</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-022-07346-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8173-2796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2193-567X |
ispartof | Arabian journal for science and engineering (2011), 2023-07, Vol.48 (7), p.9329-9338 |
issn | 2193-567X 1319-8025 2191-4281 |
language | eng |
recordid | cdi_proquest_journals_2827962755 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bagging Biomass Calorific value Classifiers Correlation coefficients Engineering Humanities and Social Sciences Machine learning multidisciplinary Multilayer perceptrons Optimization Prediction models Research Article-Petroleum Engineering Science |
title | Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Modeling%20of%20Higher%20Heating%20Value%20of%20Biomass%20Using%20Ensemble%20Machine%20Learning%20Approach&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Dubey,%20Richa&rft.date=2023-07-01&rft.volume=48&rft.issue=7&rft.spage=9329&rft.epage=9338&rft.pages=9329-9338&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-022-07346-8&rft_dat=%3Cproquest_cross%3E2827962755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827962755&rft_id=info:pmid/&rfr_iscdi=true |