Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach

Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal for science and engineering (2011) 2023-07, Vol.48 (7), p.9329-9338
Hauptverfasser: Dubey, Richa, Guruviah, Velmathi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9338
container_issue 7
container_start_page 9329
container_title Arabian journal for science and engineering (2011)
container_volume 48
creator Dubey, Richa
Guruviah, Velmathi
description Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.
doi_str_mv 10.1007/s13369-022-07346-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2827962755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827962755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWLRfwNOC52j-bLLJsZZqhYoerHgL2exsG9nu1mQr-O3NdgVvnmb4zXszzEPoipIbSkhxGynnUmPCGCYFzyVWJ2jCqKY4Z4qeHnuOhSzez9E0Rl-SXHEtKOUTZF4CVN71_guyp66CxrebrKuzpd9sIWRLsP1A3mxzgIHf-W5nY8zWccCLNsKubJLVuq1vIVuBDe0wme33oUvwEp3Vtokw_a0XaH2_eJ0v8er54XE-W2HHqe4xE1pUUijqHNVW1GUloXB5JZQEnZ6yRDNwlkPJKVCQVAFjpUhYEldUNb9A1-PedPbzALE3H90htOmkYYoVWrJCiKRio8qFLsYAtdkHv7Ph21BihizNmKVJWZpjlkYlEx9NMYnbDYS_1f-4fgC1knbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827962755</pqid></control><display><type>article</type><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dubey, Richa ; Guruviah, Velmathi</creator><creatorcontrib>Dubey, Richa ; Guruviah, Velmathi</creatorcontrib><description>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</description><identifier>ISSN: 2193-567X</identifier><identifier>ISSN: 1319-8025</identifier><identifier>EISSN: 2191-4281</identifier><identifier>DOI: 10.1007/s13369-022-07346-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bagging ; Biomass ; Calorific value ; Classifiers ; Correlation coefficients ; Engineering ; Humanities and Social Sciences ; Machine learning ; multidisciplinary ; Multilayer perceptrons ; Optimization ; Prediction models ; Research Article-Petroleum Engineering ; Science</subject><ispartof>Arabian journal for science and engineering (2011), 2023-07, Vol.48 (7), p.9329-9338</ispartof><rights>King Fahd University of Petroleum &amp; Minerals 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</citedby><cites>FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</cites><orcidid>0000-0001-8173-2796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13369-022-07346-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13369-022-07346-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dubey, Richa</creatorcontrib><creatorcontrib>Guruviah, Velmathi</creatorcontrib><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><title>Arabian journal for science and engineering (2011)</title><addtitle>Arab J Sci Eng</addtitle><description>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</description><subject>Algorithms</subject><subject>Bagging</subject><subject>Biomass</subject><subject>Calorific value</subject><subject>Classifiers</subject><subject>Correlation coefficients</subject><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Multilayer perceptrons</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Research Article-Petroleum Engineering</subject><subject>Science</subject><issn>2193-567X</issn><issn>1319-8025</issn><issn>2191-4281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWLRfwNOC52j-bLLJsZZqhYoerHgL2exsG9nu1mQr-O3NdgVvnmb4zXszzEPoipIbSkhxGynnUmPCGCYFzyVWJ2jCqKY4Z4qeHnuOhSzez9E0Rl-SXHEtKOUTZF4CVN71_guyp66CxrebrKuzpd9sIWRLsP1A3mxzgIHf-W5nY8zWccCLNsKubJLVuq1vIVuBDe0wme33oUvwEp3Vtokw_a0XaH2_eJ0v8er54XE-W2HHqe4xE1pUUijqHNVW1GUloXB5JZQEnZ6yRDNwlkPJKVCQVAFjpUhYEldUNb9A1-PedPbzALE3H90htOmkYYoVWrJCiKRio8qFLsYAtdkHv7Ph21BihizNmKVJWZpjlkYlEx9NMYnbDYS_1f-4fgC1knbe</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Dubey, Richa</creator><creator>Guruviah, Velmathi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8173-2796</orcidid></search><sort><creationdate>20230701</creationdate><title>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</title><author>Dubey, Richa ; Guruviah, Velmathi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2595d6581cc19a5fbd6e7c4d586e9073a092eca3eb31e1e618e22b5a0960c7df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bagging</topic><topic>Biomass</topic><topic>Calorific value</topic><topic>Classifiers</topic><topic>Correlation coefficients</topic><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Multilayer perceptrons</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Research Article-Petroleum Engineering</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubey, Richa</creatorcontrib><creatorcontrib>Guruviah, Velmathi</creatorcontrib><collection>CrossRef</collection><jtitle>Arabian journal for science and engineering (2011)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubey, Richa</au><au>Guruviah, Velmathi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach</atitle><jtitle>Arabian journal for science and engineering (2011)</jtitle><stitle>Arab J Sci Eng</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>48</volume><issue>7</issue><spage>9329</spage><epage>9338</epage><pages>9329-9338</pages><issn>2193-567X</issn><issn>1319-8025</issn><eissn>2191-4281</eissn><abstract>Higher heating value (HHV) of biochars serves as a critical and vital component for the determination of biomass economy. The complex biomass structure with time-consuming and costly experiment set-up necessitates HHV estimation using various machine learning approaches. In this work, a large dataset of 1140 data samples based on proximate analysis were analyzed using combinational approach of grade and value prediction for the HHV estimation. Three ensemble machine learning algorithms, namely: (i) Bagging, (ii) Multiclass classifier (MCC) and (iii) Classification-via-regression (CVR), were used in pair with the random forest (RF) and multilayer perceptron (MLP) models for the prediction of HHV. Parameter optimization and model formation using meta-classifiers improved the prediction accuracy of the designed models. Bagging and CVR meta-classifier paired with RF led to the highest sensitivity values (0.983 and 0.982, respectively) and lowest specificity values (0.0008 and 0.0009, respectively) with respect to all other designed models. RF model showed highest correlation coefficient (CC) value of 0.984 and lowest root-mean-square (RMSE) value of 1.4204.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13369-022-07346-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8173-2796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2193-567X
ispartof Arabian journal for science and engineering (2011), 2023-07, Vol.48 (7), p.9329-9338
issn 2193-567X
1319-8025
2191-4281
language eng
recordid cdi_proquest_journals_2827962755
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Bagging
Biomass
Calorific value
Classifiers
Correlation coefficients
Engineering
Humanities and Social Sciences
Machine learning
multidisciplinary
Multilayer perceptrons
Optimization
Prediction models
Research Article-Petroleum Engineering
Science
title Predictive Modeling of Higher Heating Value of Biomass Using Ensemble Machine Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A54%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Modeling%20of%20Higher%20Heating%20Value%20of%20Biomass%20Using%20Ensemble%20Machine%20Learning%20Approach&rft.jtitle=Arabian%20journal%20for%20science%20and%20engineering%20(2011)&rft.au=Dubey,%20Richa&rft.date=2023-07-01&rft.volume=48&rft.issue=7&rft.spage=9329&rft.epage=9338&rft.pages=9329-9338&rft.issn=2193-567X&rft.eissn=2191-4281&rft_id=info:doi/10.1007/s13369-022-07346-8&rft_dat=%3Cproquest_cross%3E2827962755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827962755&rft_id=info:pmid/&rfr_iscdi=true