Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors

Upconversion nanoparticles (UCNPs), as near‐infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced optical materials 2023-06, Vol.11 (12), p.n/a
Hauptverfasser: Lee, Injun, Park, Cheolmin, Kim, Tae Soo, Kang, Minsoo, Oh, Hyeongyeol, Jang, Jinhyeong, Park, Jungjae, Yuk, Jong Min, Lee, Hohjai, Park, Chan Beum, Choi, Sung‐Yool, Kang, Kibum, Lee, Wonryung, Bae, Byeong‐Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Advanced optical materials
container_volume 11
creator Lee, Injun
Park, Cheolmin
Kim, Tae Soo
Kang, Minsoo
Oh, Hyeongyeol
Jang, Jinhyeong
Park, Jungjae
Yuk, Jong Min
Lee, Hohjai
Park, Chan Beum
Choi, Sung‐Yool
Kang, Kibum
Lee, Wonryung
Bae, Byeong‐Soo
description Upconversion nanoparticles (UCNPs), as near‐infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large‐area integrated devices, water stability and micro‐patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol–gel process to enable photo‐patternability and photo‐stabililty in water conditions. The UCNP@SiOx can be photo‐patterned down to micron‐scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non‐toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W−1) and specific detectivity (2.22 × 107 Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re‐stretch test. This work opens the way for the facile synthesis of water‐stable and photo‐patternable siloxane‐encapsulated UCNPs and a strategy for fabricating high‐performance flexible NIR phototransistors through wavelength conversion. Siloxane‐encapsulated upconversion nanoparticle (UCNP@SiOx) is proposed that can be photo‐patterned to micro‐size and exhibits water‐stable upconverting properties. MoS2 phototransistors with UCNP@SiOx demonstrate increase in near‐infrared (NIR) responsivity, which is ≈2.8 times that of pristine MoS2 phototransistors. This study provides a facile synthesis method for encapsulating the UCNP with water‐stability and photo‐patternability, and for fabricating high‐performance flexible NIR phototransistors through wavelength conversion.
doi_str_mv 10.1002/adom.202202469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2827191823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827191823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3579-f521a8d717d927d47e44578da8a11cf1d612851df664e7a8eb760875352393b33</originalsourceid><addsrcrecordid>eNqFUE1PAjEQbYwmEuTqeRPPYNv9aPdIEJQEwQSJx82w7cYlpV3bInDz7Mnf6C9xV4h6M5lkZt68N5N5CF0S3CMY02sQZt2jmNYRJekJalGSxl2CGTn9U5-jjnMrjHHdhGnEWuj9Cby0n28fcw9LJQPQInh4Nt7U0AP4eqa_8XmpzA60rOGhzqFyG1ULRbCocqNfpXWl0cEUtKnA-jJX0gXebMGKYKTkrmxWTCU0h8a6sGDl8Yy3oF3pvLHuAp0VoJzsHHMbLUbDx8FddzK7HQ_6k24exiztFjElwAUjTKSUiYjJKIoZF8CBkLwgIiGUx0QUSRJJBlwuWYI5i8OYhmm4DMM2ujrsrax52Ujns5XZ1G8ql1FOGUkJpw2rd2Dl1jhnZZFVtlyD3WcEZ43lWWN59mN5LUgPgm2p5P4fdta_md3_ar8AB5SLmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827191823</pqid></control><display><type>article</type><title>Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Injun ; Park, Cheolmin ; Kim, Tae Soo ; Kang, Minsoo ; Oh, Hyeongyeol ; Jang, Jinhyeong ; Park, Jungjae ; Yuk, Jong Min ; Lee, Hohjai ; Park, Chan Beum ; Choi, Sung‐Yool ; Kang, Kibum ; Lee, Wonryung ; Bae, Byeong‐Soo</creator><creatorcontrib>Lee, Injun ; Park, Cheolmin ; Kim, Tae Soo ; Kang, Minsoo ; Oh, Hyeongyeol ; Jang, Jinhyeong ; Park, Jungjae ; Yuk, Jong Min ; Lee, Hohjai ; Park, Chan Beum ; Choi, Sung‐Yool ; Kang, Kibum ; Lee, Wonryung ; Bae, Byeong‐Soo</creatorcontrib><description>Upconversion nanoparticles (UCNPs), as near‐infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large‐area integrated devices, water stability and micro‐patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol–gel process to enable photo‐patternability and photo‐stabililty in water conditions. The UCNP@SiOx can be photo‐patterned down to micron‐scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non‐toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W−1) and specific detectivity (2.22 × 107 Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re‐stretch test. This work opens the way for the facile synthesis of water‐stable and photo‐patternable siloxane‐encapsulated UCNPs and a strategy for fabricating high‐performance flexible NIR phototransistors through wavelength conversion. Siloxane‐encapsulated upconversion nanoparticle (UCNP@SiOx) is proposed that can be photo‐patterned to micro‐size and exhibits water‐stable upconverting properties. MoS2 phototransistors with UCNP@SiOx demonstrate increase in near‐infrared (NIR) responsivity, which is ≈2.8 times that of pristine MoS2 phototransistors. This study provides a facile synthesis method for encapsulating the UCNP with water‐stability and photo‐patternability, and for fabricating high‐performance flexible NIR phototransistors through wavelength conversion.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202202469</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Encapsulation ; flexible electronics ; In vitro methods and tests ; Materials science ; Molybdenum disulfide ; Nanoparticles ; Near infrared radiation ; near‐infrared ; Optics ; Photoluminescence ; Phototransistors ; siloxane ; Siloxanes ; Sol-gel processes ; supconversion nanoparticle ; Upconversion ; Water stability ; Wearable technology</subject><ispartof>Advanced optical materials, 2023-06, Vol.11 (12), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3579-f521a8d717d927d47e44578da8a11cf1d612851df664e7a8eb760875352393b33</citedby><cites>FETCH-LOGICAL-c3579-f521a8d717d927d47e44578da8a11cf1d612851df664e7a8eb760875352393b33</cites><orcidid>0000-0001-9673-1833 ; 0000-0001-9424-1830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202202469$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202202469$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Lee, Injun</creatorcontrib><creatorcontrib>Park, Cheolmin</creatorcontrib><creatorcontrib>Kim, Tae Soo</creatorcontrib><creatorcontrib>Kang, Minsoo</creatorcontrib><creatorcontrib>Oh, Hyeongyeol</creatorcontrib><creatorcontrib>Jang, Jinhyeong</creatorcontrib><creatorcontrib>Park, Jungjae</creatorcontrib><creatorcontrib>Yuk, Jong Min</creatorcontrib><creatorcontrib>Lee, Hohjai</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Choi, Sung‐Yool</creatorcontrib><creatorcontrib>Kang, Kibum</creatorcontrib><creatorcontrib>Lee, Wonryung</creatorcontrib><creatorcontrib>Bae, Byeong‐Soo</creatorcontrib><title>Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors</title><title>Advanced optical materials</title><description>Upconversion nanoparticles (UCNPs), as near‐infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large‐area integrated devices, water stability and micro‐patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol–gel process to enable photo‐patternability and photo‐stabililty in water conditions. The UCNP@SiOx can be photo‐patterned down to micron‐scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non‐toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W−1) and specific detectivity (2.22 × 107 Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re‐stretch test. This work opens the way for the facile synthesis of water‐stable and photo‐patternable siloxane‐encapsulated UCNPs and a strategy for fabricating high‐performance flexible NIR phototransistors through wavelength conversion. Siloxane‐encapsulated upconversion nanoparticle (UCNP@SiOx) is proposed that can be photo‐patterned to micro‐size and exhibits water‐stable upconverting properties. MoS2 phototransistors with UCNP@SiOx demonstrate increase in near‐infrared (NIR) responsivity, which is ≈2.8 times that of pristine MoS2 phototransistors. This study provides a facile synthesis method for encapsulating the UCNP with water‐stability and photo‐patternability, and for fabricating high‐performance flexible NIR phototransistors through wavelength conversion.</description><subject>Biocompatibility</subject><subject>Encapsulation</subject><subject>flexible electronics</subject><subject>In vitro methods and tests</subject><subject>Materials science</subject><subject>Molybdenum disulfide</subject><subject>Nanoparticles</subject><subject>Near infrared radiation</subject><subject>near‐infrared</subject><subject>Optics</subject><subject>Photoluminescence</subject><subject>Phototransistors</subject><subject>siloxane</subject><subject>Siloxanes</subject><subject>Sol-gel processes</subject><subject>supconversion nanoparticle</subject><subject>Upconversion</subject><subject>Water stability</subject><subject>Wearable technology</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAjEQbYwmEuTqeRPPYNv9aPdIEJQEwQSJx82w7cYlpV3bInDz7Mnf6C9xV4h6M5lkZt68N5N5CF0S3CMY02sQZt2jmNYRJekJalGSxl2CGTn9U5-jjnMrjHHdhGnEWuj9Cby0n28fcw9LJQPQInh4Nt7U0AP4eqa_8XmpzA60rOGhzqFyG1ULRbCocqNfpXWl0cEUtKnA-jJX0gXebMGKYKTkrmxWTCU0h8a6sGDl8Yy3oF3pvLHuAp0VoJzsHHMbLUbDx8FddzK7HQ_6k24exiztFjElwAUjTKSUiYjJKIoZF8CBkLwgIiGUx0QUSRJJBlwuWYI5i8OYhmm4DMM2ujrsrax52Ujns5XZ1G8ql1FOGUkJpw2rd2Dl1jhnZZFVtlyD3WcEZ43lWWN59mN5LUgPgm2p5P4fdta_md3_ar8AB5SLmw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Lee, Injun</creator><creator>Park, Cheolmin</creator><creator>Kim, Tae Soo</creator><creator>Kang, Minsoo</creator><creator>Oh, Hyeongyeol</creator><creator>Jang, Jinhyeong</creator><creator>Park, Jungjae</creator><creator>Yuk, Jong Min</creator><creator>Lee, Hohjai</creator><creator>Park, Chan Beum</creator><creator>Choi, Sung‐Yool</creator><creator>Kang, Kibum</creator><creator>Lee, Wonryung</creator><creator>Bae, Byeong‐Soo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9673-1833</orcidid><orcidid>https://orcid.org/0000-0001-9424-1830</orcidid></search><sort><creationdate>20230601</creationdate><title>Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors</title><author>Lee, Injun ; Park, Cheolmin ; Kim, Tae Soo ; Kang, Minsoo ; Oh, Hyeongyeol ; Jang, Jinhyeong ; Park, Jungjae ; Yuk, Jong Min ; Lee, Hohjai ; Park, Chan Beum ; Choi, Sung‐Yool ; Kang, Kibum ; Lee, Wonryung ; Bae, Byeong‐Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3579-f521a8d717d927d47e44578da8a11cf1d612851df664e7a8eb760875352393b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biocompatibility</topic><topic>Encapsulation</topic><topic>flexible electronics</topic><topic>In vitro methods and tests</topic><topic>Materials science</topic><topic>Molybdenum disulfide</topic><topic>Nanoparticles</topic><topic>Near infrared radiation</topic><topic>near‐infrared</topic><topic>Optics</topic><topic>Photoluminescence</topic><topic>Phototransistors</topic><topic>siloxane</topic><topic>Siloxanes</topic><topic>Sol-gel processes</topic><topic>supconversion nanoparticle</topic><topic>Upconversion</topic><topic>Water stability</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Injun</creatorcontrib><creatorcontrib>Park, Cheolmin</creatorcontrib><creatorcontrib>Kim, Tae Soo</creatorcontrib><creatorcontrib>Kang, Minsoo</creatorcontrib><creatorcontrib>Oh, Hyeongyeol</creatorcontrib><creatorcontrib>Jang, Jinhyeong</creatorcontrib><creatorcontrib>Park, Jungjae</creatorcontrib><creatorcontrib>Yuk, Jong Min</creatorcontrib><creatorcontrib>Lee, Hohjai</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Choi, Sung‐Yool</creatorcontrib><creatorcontrib>Kang, Kibum</creatorcontrib><creatorcontrib>Lee, Wonryung</creatorcontrib><creatorcontrib>Bae, Byeong‐Soo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Injun</au><au>Park, Cheolmin</au><au>Kim, Tae Soo</au><au>Kang, Minsoo</au><au>Oh, Hyeongyeol</au><au>Jang, Jinhyeong</au><au>Park, Jungjae</au><au>Yuk, Jong Min</au><au>Lee, Hohjai</au><au>Park, Chan Beum</au><au>Choi, Sung‐Yool</au><au>Kang, Kibum</au><au>Lee, Wonryung</au><au>Bae, Byeong‐Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors</atitle><jtitle>Advanced optical materials</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>11</volume><issue>12</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Upconversion nanoparticles (UCNPs), as near‐infrared (NIR) absorbers, are promising materials for use in flexible NIR photodetectors, which can be applied for wearable healthcare applications due to their advantages in a broad spectral range, high photostability, and biocompatibility. However, to apply UCNPs in wearable and large‐area integrated devices, water stability and micro‐patterning methods are required. In this work, the UCNPs are encapsulated with a siloxane polymer (UCNP@SiOx) via a sol–gel process to enable photo‐patternability and photo‐stabililty in water conditions. The UCNP@SiOx can be photo‐patterned down to micron‐scale feature sizes and exhibit no significant decrease in upconversion photoluminescence (PL) intensities and PL decay time after immersion in water for 2 h. Moreover, UCNP@SiOx is evaluated by an in vitro biocompatibility test and found to be non‐toxic. By integrating the UCNP@SiOx with MoS2 phototransistors (MoS2 + UCNP@SiOx), the devices exhibit enhanced responsivity (0.79 A W−1) and specific detectivity (2.22 × 107 Jones), which are 2.8 times higher than in the bare MoS2 phototransistors, and excellent mechanical durability over 1000 cycles of 20% compression and re‐stretch test. This work opens the way for the facile synthesis of water‐stable and photo‐patternable siloxane‐encapsulated UCNPs and a strategy for fabricating high‐performance flexible NIR phototransistors through wavelength conversion. Siloxane‐encapsulated upconversion nanoparticle (UCNP@SiOx) is proposed that can be photo‐patterned to micro‐size and exhibits water‐stable upconverting properties. MoS2 phototransistors with UCNP@SiOx demonstrate increase in near‐infrared (NIR) responsivity, which is ≈2.8 times that of pristine MoS2 phototransistors. This study provides a facile synthesis method for encapsulating the UCNP with water‐stability and photo‐patternability, and for fabricating high‐performance flexible NIR phototransistors through wavelength conversion.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202202469</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9673-1833</orcidid><orcidid>https://orcid.org/0000-0001-9424-1830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-1071
ispartof Advanced optical materials, 2023-06, Vol.11 (12), p.n/a
issn 2195-1071
2195-1071
language eng
recordid cdi_proquest_journals_2827191823
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Encapsulation
flexible electronics
In vitro methods and tests
Materials science
Molybdenum disulfide
Nanoparticles
Near infrared radiation
near‐infrared
Optics
Photoluminescence
Phototransistors
siloxane
Siloxanes
Sol-gel processes
supconversion nanoparticle
Upconversion
Water stability
Wearable technology
title Water‐Stable and Photo‐Patternable Siloxane‐Encapsulated Upconversion Nanoparticles toward Flexible Near‐Infrared Phototransistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%E2%80%90Stable%20and%20Photo%E2%80%90Patternable%20Siloxane%E2%80%90Encapsulated%20Upconversion%20Nanoparticles%20toward%20Flexible%20Near%E2%80%90Infrared%20Phototransistors&rft.jtitle=Advanced%20optical%20materials&rft.au=Lee,%20Injun&rft.date=2023-06-01&rft.volume=11&rft.issue=12&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202202469&rft_dat=%3Cproquest_cross%3E2827191823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827191823&rft_id=info:pmid/&rfr_iscdi=true