Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model
Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by congenital observations, although computers...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2023, Vol.2023 (1) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematical problems in engineering |
container_volume | 2023 |
creator | Venkatasubramanian, S. Dwivedi, Jaiprakash Narain Raja, S. Rajeswari, N. Logeshwaran, J. Praveen Kumar, Avvaru |
description | Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by congenital observations, although computers have been utilized in several recent research studies to diagnose AD. In AD, the hippocampus is usually the first part of the brain to be affected. Structural magnetic resonance imaging (SMRI) can be used to assist in diagnosing AD by measuring the hippocampus’s form and volume (MRI). The information encoded by these attributes is restricted and may be affected by segmentation problems. These traits are also extracted independently of the classification, which could result in lower-than-desired classification accuracy. Researchers in this study used structural MRI data to develop a deep learning framework for combined automatic hippocampus segmentation and AD categorization. Multi-task deep learning (MTDL) is used to learn hippocampus segmentation simultaneously. The hyperparameter optimization of the CNN model (capsule network) for illness classification is then carried out using the deer hunting optimization (DHO) technique. ADNI-standardized MRI datasets have been used to test the suggested method, and it is accurate. Suggested MTDL achieved 97.1% accuracy and 93.5% of Dice coefficient, whereas the proposed MTDL model achieved an accuracy of 96% for binary classification and 93% for multi-class classification. |
doi_str_mv | 10.1155/2023/1110500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2827113038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2827113038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2520-eb01b8bdb5ee57bc41130147a91ccd725408e8cd0bde5a8d3b8d9ed2367df5113</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYjufIAmLnWkt50yZYmgYoLgQhJ3k_7ckRKY0RZidOVr-Ho-iSWwdnXPTb577skh5BzYNYCUHc646AAAk4wdkBbIrsgk5MVh0oznGXDxckxOYlwwxkGCapHRU0Dn7do3NW0q2l9-zdGvMPx-_0Q69BF1RDqLvn6lw9E0u0mro-lmHbSvkxxMJvSxcbg8JUeVXkY82882md3dPg9G2Xh6_zDojzPLJWcZGgZGGWckoiyMzQEESxF1D6x1BZc5U6isY8ah1MoJo1wPHRfdwlUywW1ysfN9C837BuO6XDSbUKeXJVe82NoJlairHWVDE2PAqnwLfqXDZwms3HZVbrsq910l_HKHz33t9If_n_4Dnadnqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827113038</pqid></control><display><type>article</type><title>Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Venkatasubramanian, S. ; Dwivedi, Jaiprakash Narain ; Raja, S. ; Rajeswari, N. ; Logeshwaran, J. ; Praveen Kumar, Avvaru</creator><contributor>Mohammadzadeh, Ardashir</contributor><creatorcontrib>Venkatasubramanian, S. ; Dwivedi, Jaiprakash Narain ; Raja, S. ; Rajeswari, N. ; Logeshwaran, J. ; Praveen Kumar, Avvaru ; Mohammadzadeh, Ardashir</creatorcontrib><description>Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by congenital observations, although computers have been utilized in several recent research studies to diagnose AD. In AD, the hippocampus is usually the first part of the brain to be affected. Structural magnetic resonance imaging (SMRI) can be used to assist in diagnosing AD by measuring the hippocampus’s form and volume (MRI). The information encoded by these attributes is restricted and may be affected by segmentation problems. These traits are also extracted independently of the classification, which could result in lower-than-desired classification accuracy. Researchers in this study used structural MRI data to develop a deep learning framework for combined automatic hippocampus segmentation and AD categorization. Multi-task deep learning (MTDL) is used to learn hippocampus segmentation simultaneously. The hyperparameter optimization of the CNN model (capsule network) for illness classification is then carried out using the deer hunting optimization (DHO) technique. ADNI-standardized MRI datasets have been used to test the suggested method, and it is accurate. Suggested MTDL achieved 97.1% accuracy and 93.5% of Dice coefficient, whereas the proposed MTDL model achieved an accuracy of 96% for binary classification and 93% for multi-class classification.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2023/1110500</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Alzheimer's disease ; Biomarkers ; Brain damage ; Classification ; Cognitive ability ; Deep learning ; Dementia ; Feature selection ; Hippocampus ; Illnesses ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Medical imaging ; Model accuracy ; Neural networks ; Neuroimaging ; Optimization ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2023, Vol.2023 (1)</ispartof><rights>Copyright © 2023 S. Venkatasubramanian et al.</rights><rights>Copyright © 2023 S. Venkatasubramanian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2520-eb01b8bdb5ee57bc41130147a91ccd725408e8cd0bde5a8d3b8d9ed2367df5113</citedby><cites>FETCH-LOGICAL-c2520-eb01b8bdb5ee57bc41130147a91ccd725408e8cd0bde5a8d3b8d9ed2367df5113</cites><orcidid>0000-0002-9103-2707 ; 0000-0001-5012-0666 ; 0000-0002-2132-566X ; 0000-0002-6779-6467 ; 0000-0001-7560-0164 ; 0000-0002-5853-2216</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Mohammadzadeh, Ardashir</contributor><creatorcontrib>Venkatasubramanian, S.</creatorcontrib><creatorcontrib>Dwivedi, Jaiprakash Narain</creatorcontrib><creatorcontrib>Raja, S.</creatorcontrib><creatorcontrib>Rajeswari, N.</creatorcontrib><creatorcontrib>Logeshwaran, J.</creatorcontrib><creatorcontrib>Praveen Kumar, Avvaru</creatorcontrib><title>Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model</title><title>Mathematical problems in engineering</title><description>Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by congenital observations, although computers have been utilized in several recent research studies to diagnose AD. In AD, the hippocampus is usually the first part of the brain to be affected. Structural magnetic resonance imaging (SMRI) can be used to assist in diagnosing AD by measuring the hippocampus’s form and volume (MRI). The information encoded by these attributes is restricted and may be affected by segmentation problems. These traits are also extracted independently of the classification, which could result in lower-than-desired classification accuracy. Researchers in this study used structural MRI data to develop a deep learning framework for combined automatic hippocampus segmentation and AD categorization. Multi-task deep learning (MTDL) is used to learn hippocampus segmentation simultaneously. The hyperparameter optimization of the CNN model (capsule network) for illness classification is then carried out using the deer hunting optimization (DHO) technique. ADNI-standardized MRI datasets have been used to test the suggested method, and it is accurate. Suggested MTDL achieved 97.1% accuracy and 93.5% of Dice coefficient, whereas the proposed MTDL model achieved an accuracy of 96% for binary classification and 93% for multi-class classification.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Alzheimer's disease</subject><subject>Biomarkers</subject><subject>Brain damage</subject><subject>Classification</subject><subject>Cognitive ability</subject><subject>Deep learning</subject><subject>Dementia</subject><subject>Feature selection</subject><subject>Hippocampus</subject><subject>Illnesses</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Optimization</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1OAjEUhRujiYjufIAmLnWkt50yZYmgYoLgQhJ3k_7ckRKY0RZidOVr-Ho-iSWwdnXPTb577skh5BzYNYCUHc646AAAk4wdkBbIrsgk5MVh0oznGXDxckxOYlwwxkGCapHRU0Dn7do3NW0q2l9-zdGvMPx-_0Q69BF1RDqLvn6lw9E0u0mro-lmHbSvkxxMJvSxcbg8JUeVXkY82882md3dPg9G2Xh6_zDojzPLJWcZGgZGGWckoiyMzQEESxF1D6x1BZc5U6isY8ah1MoJo1wPHRfdwlUywW1ysfN9C837BuO6XDSbUKeXJVe82NoJlairHWVDE2PAqnwLfqXDZwms3HZVbrsq910l_HKHz33t9If_n_4Dnadnqw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Venkatasubramanian, S.</creator><creator>Dwivedi, Jaiprakash Narain</creator><creator>Raja, S.</creator><creator>Rajeswari, N.</creator><creator>Logeshwaran, J.</creator><creator>Praveen Kumar, Avvaru</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9103-2707</orcidid><orcidid>https://orcid.org/0000-0001-5012-0666</orcidid><orcidid>https://orcid.org/0000-0002-2132-566X</orcidid><orcidid>https://orcid.org/0000-0002-6779-6467</orcidid><orcidid>https://orcid.org/0000-0001-7560-0164</orcidid><orcidid>https://orcid.org/0000-0002-5853-2216</orcidid></search><sort><creationdate>2023</creationdate><title>Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model</title><author>Venkatasubramanian, S. ; Dwivedi, Jaiprakash Narain ; Raja, S. ; Rajeswari, N. ; Logeshwaran, J. ; Praveen Kumar, Avvaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2520-eb01b8bdb5ee57bc41130147a91ccd725408e8cd0bde5a8d3b8d9ed2367df5113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Alzheimer's disease</topic><topic>Biomarkers</topic><topic>Brain damage</topic><topic>Classification</topic><topic>Cognitive ability</topic><topic>Deep learning</topic><topic>Dementia</topic><topic>Feature selection</topic><topic>Hippocampus</topic><topic>Illnesses</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Optimization</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatasubramanian, S.</creatorcontrib><creatorcontrib>Dwivedi, Jaiprakash Narain</creatorcontrib><creatorcontrib>Raja, S.</creatorcontrib><creatorcontrib>Rajeswari, N.</creatorcontrib><creatorcontrib>Logeshwaran, J.</creatorcontrib><creatorcontrib>Praveen Kumar, Avvaru</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatasubramanian, S.</au><au>Dwivedi, Jaiprakash Narain</au><au>Raja, S.</au><au>Rajeswari, N.</au><au>Logeshwaran, J.</au><au>Praveen Kumar, Avvaru</au><au>Mohammadzadeh, Ardashir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Detecting Alzheimer’s disease (AD) early on allows patients to take preventative measures before the onset of irreversible brain damage, which is a critical factor in the treatment of Alzheimer’s patients. Most machine detection methods are constrained by congenital observations, although computers have been utilized in several recent research studies to diagnose AD. In AD, the hippocampus is usually the first part of the brain to be affected. Structural magnetic resonance imaging (SMRI) can be used to assist in diagnosing AD by measuring the hippocampus’s form and volume (MRI). The information encoded by these attributes is restricted and may be affected by segmentation problems. These traits are also extracted independently of the classification, which could result in lower-than-desired classification accuracy. Researchers in this study used structural MRI data to develop a deep learning framework for combined automatic hippocampus segmentation and AD categorization. Multi-task deep learning (MTDL) is used to learn hippocampus segmentation simultaneously. The hyperparameter optimization of the CNN model (capsule network) for illness classification is then carried out using the deer hunting optimization (DHO) technique. ADNI-standardized MRI datasets have been used to test the suggested method, and it is accurate. Suggested MTDL achieved 97.1% accuracy and 93.5% of Dice coefficient, whereas the proposed MTDL model achieved an accuracy of 96% for binary classification and 93% for multi-class classification.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/1110500</doi><orcidid>https://orcid.org/0000-0002-9103-2707</orcidid><orcidid>https://orcid.org/0000-0001-5012-0666</orcidid><orcidid>https://orcid.org/0000-0002-2132-566X</orcidid><orcidid>https://orcid.org/0000-0002-6779-6467</orcidid><orcidid>https://orcid.org/0000-0001-7560-0164</orcidid><orcidid>https://orcid.org/0000-0002-5853-2216</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2023, Vol.2023 (1) |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2827113038 |
source | Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Alzheimer's disease Biomarkers Brain damage Classification Cognitive ability Deep learning Dementia Feature selection Hippocampus Illnesses Image segmentation Machine learning Magnetic resonance imaging Medical imaging Model accuracy Neural networks Neuroimaging Optimization Support vector machines |
title | Prediction of Alzheimer’s Disease Using DHO-Based Pretrained CNN Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Alzheimer%E2%80%99s%20Disease%20Using%20DHO-Based%20Pretrained%20CNN%20Model&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Venkatasubramanian,%20S.&rft.date=2023&rft.volume=2023&rft.issue=1&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2023/1110500&rft_dat=%3Cproquest_cross%3E2827113038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2827113038&rft_id=info:pmid/&rfr_iscdi=true |