Model-Free Market Risk Hedging Using Crowding Networks

Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Zlotnikov, Vadim, Liu, Jiayu, Halperin, Igor, He, Fei, Huang, Lisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zlotnikov, Vadim
Liu, Jiayu
Halperin, Igor
He, Fei
Huang, Lisa
description Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2826542318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826542318</sourcerecordid><originalsourceid>FETCH-proquest_journals_28265423183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw881PSc3RdStKTVXwTSzKTi1RCMoszlbwSE1Jz8xLVwgtBpHORfnlKSCGX2pJeX5RdjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRiZmZoYGRtaGBOnCgB6VTTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826542318</pqid></control><display><type>article</type><title>Model-Free Market Risk Hedging Using Crowding Networks</title><source>Free E- Journals</source><creator>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</creator><creatorcontrib>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</creatorcontrib><description>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Crowding ; Hedging ; Mathematical models ; Network analysis ; Optimization</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Zlotnikov, Vadim</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Halperin, Igor</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Huang, Lisa</creatorcontrib><title>Model-Free Market Risk Hedging Using Crowding Networks</title><title>arXiv.org</title><description>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</description><subject>Convexity</subject><subject>Crowding</subject><subject>Hedging</subject><subject>Mathematical models</subject><subject>Network analysis</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw881PSc3RdStKTVXwTSzKTi1RCMoszlbwSE1Jz8xLVwgtBpHORfnlKSCGX2pJeX5RdjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRiZmZoYGRtaGBOnCgB6VTTA</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Zlotnikov, Vadim</creator><creator>Liu, Jiayu</creator><creator>Halperin, Igor</creator><creator>He, Fei</creator><creator>Huang, Lisa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230613</creationdate><title>Model-Free Market Risk Hedging Using Crowding Networks</title><author>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28265423183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Crowding</topic><topic>Hedging</topic><topic>Mathematical models</topic><topic>Network analysis</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zlotnikov, Vadim</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Halperin, Igor</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Huang, Lisa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zlotnikov, Vadim</au><au>Liu, Jiayu</au><au>Halperin, Igor</au><au>He, Fei</au><au>Huang, Lisa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model-Free Market Risk Hedging Using Crowding Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-06-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2826542318
source Free E- Journals
subjects Convexity
Crowding
Hedging
Mathematical models
Network analysis
Optimization
title Model-Free Market Risk Hedging Using Crowding Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model-Free%20Market%20Risk%20Hedging%20Using%20Crowding%20Networks&rft.jtitle=arXiv.org&rft.au=Zlotnikov,%20Vadim&rft.date=2023-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2826542318%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826542318&rft_id=info:pmid/&rfr_iscdi=true