Model-Free Market Risk Hedging Using Crowding Networks
Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portf...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zlotnikov, Vadim Liu, Jiayu Halperin, Igor He, Fei Huang, Lisa |
description | Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2826542318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826542318</sourcerecordid><originalsourceid>FETCH-proquest_journals_28265423183</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw881PSc3RdStKTVXwTSzKTi1RCMoszlbwSE1Jz8xLVwgtBpHORfnlKSCGX2pJeX5RdjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRiZmZoYGRtaGBOnCgB6VTTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826542318</pqid></control><display><type>article</type><title>Model-Free Market Risk Hedging Using Crowding Networks</title><source>Free E- Journals</source><creator>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</creator><creatorcontrib>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</creatorcontrib><description>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Crowding ; Hedging ; Mathematical models ; Network analysis ; Optimization</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Zlotnikov, Vadim</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Halperin, Igor</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Huang, Lisa</creatorcontrib><title>Model-Free Market Risk Hedging Using Crowding Networks</title><title>arXiv.org</title><description>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</description><subject>Convexity</subject><subject>Crowding</subject><subject>Hedging</subject><subject>Mathematical models</subject><subject>Network analysis</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw881PSc3RdStKTVXwTSzKTi1RCMoszlbwSE1Jz8xLVwgtBpHORfnlKSCGX2pJeX5RdjEPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRiZmZoYGRtaGBOnCgB6VTTA</recordid><startdate>20230613</startdate><enddate>20230613</enddate><creator>Zlotnikov, Vadim</creator><creator>Liu, Jiayu</creator><creator>Halperin, Igor</creator><creator>He, Fei</creator><creator>Huang, Lisa</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230613</creationdate><title>Model-Free Market Risk Hedging Using Crowding Networks</title><author>Zlotnikov, Vadim ; Liu, Jiayu ; Halperin, Igor ; He, Fei ; Huang, Lisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28265423183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convexity</topic><topic>Crowding</topic><topic>Hedging</topic><topic>Mathematical models</topic><topic>Network analysis</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Zlotnikov, Vadim</creatorcontrib><creatorcontrib>Liu, Jiayu</creatorcontrib><creatorcontrib>Halperin, Igor</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Huang, Lisa</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zlotnikov, Vadim</au><au>Liu, Jiayu</au><au>Halperin, Igor</au><au>He, Fei</au><au>Huang, Lisa</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Model-Free Market Risk Hedging Using Crowding Networks</atitle><jtitle>arXiv.org</jtitle><date>2023-06-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Crowding is widely regarded as one of the most important risk factors in designing portfolio strategies. In this paper, we analyze stock crowding using network analysis of fund holdings, which is used to compute crowding scores for stocks. These scores are used to construct costless long-short portfolios, computed in a distribution-free (model-free) way and without using any numerical optimization, with desirable properties of hedge portfolios. More specifically, these long-short portfolios provide protection for both small and large market price fluctuations, due to their negative correlation with the market and positive convexity as a function of market returns. By adding our long-short portfolio to a baseline portfolio such as a traditional 60/40 portfolio, our method provides an alternative way to hedge portfolio risk including tail risk, which does not require costly option-based strategies or complex numerical optimization. The total cost of such hedging amounts to the total cost of rebalancing the hedge portfolio.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2826542318 |
source | Free E- Journals |
subjects | Convexity Crowding Hedging Mathematical models Network analysis Optimization |
title | Model-Free Market Risk Hedging Using Crowding Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Model-Free%20Market%20Risk%20Hedging%20Using%20Crowding%20Networks&rft.jtitle=arXiv.org&rft.au=Zlotnikov,%20Vadim&rft.date=2023-06-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2826542318%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826542318&rft_id=info:pmid/&rfr_iscdi=true |