Neural Fine-Tuning Search for Few-Shot Learning
In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Eustratiadis, Panagiotis Dudziak, Łukasz Li, Da Hospedales, Timothy |
description | In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2826534498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826534498</sourcerecordid><originalsourceid>FETCH-proquest_journals_28265344983</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ90stLUrMUXDLzEvVDSnNy8xLVwhOTSxKzlBIyy9ScEst1w3OyC9R8AGKgSR5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMLIzNTYxMTSwpg4VQDT2jH_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826534498</pqid></control><display><type>article</type><title>Neural Fine-Tuning Search for Few-Shot Learning</title><source>Free E- Journals</source><creator>Eustratiadis, Panagiotis ; Dudziak, Łukasz ; Li, Da ; Hospedales, Timothy</creator><creatorcontrib>Eustratiadis, Panagiotis ; Dudziak, Łukasz ; Li, Da ; Hospedales, Timothy</creatorcontrib><description>In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Algorithms ; Neural networks ; Questions</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Eustratiadis, Panagiotis</creatorcontrib><creatorcontrib>Dudziak, Łukasz</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Hospedales, Timothy</creatorcontrib><title>Neural Fine-Tuning Search for Few-Shot Learning</title><title>arXiv.org</title><description>In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Neural networks</subject><subject>Questions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ90stLUrMUXDLzEvVDSnNy8xLVwhOTSxKzlBIyy9ScEst1w3OyC9R8AGKgSR5GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aVEeUCreyMLIzNTYxMTSwpg4VQDT2jH_</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Eustratiadis, Panagiotis</creator><creator>Dudziak, Łukasz</creator><creator>Li, Da</creator><creator>Hospedales, Timothy</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230615</creationdate><title>Neural Fine-Tuning Search for Few-Shot Learning</title><author>Eustratiadis, Panagiotis ; Dudziak, Łukasz ; Li, Da ; Hospedales, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28265344983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Neural networks</topic><topic>Questions</topic><toplevel>online_resources</toplevel><creatorcontrib>Eustratiadis, Panagiotis</creatorcontrib><creatorcontrib>Dudziak, Łukasz</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Hospedales, Timothy</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eustratiadis, Panagiotis</au><au>Dudziak, Łukasz</au><au>Li, Da</au><au>Hospedales, Timothy</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neural Fine-Tuning Search for Few-Shot Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-06-15</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In few-shot recognition, a classifier that has been trained on one set of classes is required to rapidly adapt and generalize to a disjoint, novel set of classes. To that end, recent studies have shown the efficacy of fine-tuning with carefully crafted adaptation architectures. However this raises the question of: How can one design the optimal adaptation strategy? In this paper, we study this question through the lens of neural architecture search (NAS). Given a pre-trained neural network, our algorithm discovers the optimal arrangement of adapters, which layers to keep frozen and which to fine-tune. We demonstrate the generality of our NAS method by applying it to both residual networks and vision transformers and report state-of-the-art performance on Meta-Dataset and Meta-Album.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2826534498 |
source | Free E- Journals |
subjects | Adaptation Algorithms Neural networks Questions |
title | Neural Fine-Tuning Search for Few-Shot Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neural%20Fine-Tuning%20Search%20for%20Few-Shot%20Learning&rft.jtitle=arXiv.org&rft.au=Eustratiadis,%20Panagiotis&rft.date=2023-06-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2826534498%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826534498&rft_id=info:pmid/&rfr_iscdi=true |