Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors
Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Hanif, Muhammad Shehzad Bilal, Muhammad Munawar, Khalid Al-Saggaf, Ubaid M. |
description | Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature. |
doi_str_mv | 10.1109/ACCESS.2023.3284463 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2826477379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147203</ieee_id><doaj_id>oai_doaj_org_article_3e86f18e906a4aa9acf49ff1a0e5ef24</doaj_id><sourcerecordid>2826477379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbWQXFPUX6KHBc49JKv2Ro7SzOiAouHoN1Z3KTIax0yY9gv_ezLYs1qE-HvVeQb0su-BswTlT1zdtu3x-XggmYAGikbKCo-xE8EoVUEL160d_nJ3HuGUpmgSV9Ulml8MGh94N67z1wwcNk_MD7vI78m80hc-iw0gmf3Vxn9BHM6P5kxtp5wbKp03w-_UmXw0TrQMe2Lm3-S3RmFLsgxsnH-JZ9tviLtL5dz3NXv4s_7b3xcPj3aq9eSh6KNVUSJRYqk5JLnqLJTNgBO-gRA6sbhphGktYQyfIdNJwhkYxU6cJJFdoOJxmq1nXeNzqMbg3DJ_ao9P_AB_WGsPk-h1poKayvCHFqnQVFfZWKms5MirJCpm0rmatMfj3PcVJb_0-pOdELRpRybqGWqUtmLf64GMMZP9f5Uwf_NGzP_rgj_72J7EuZ5Yjoh8MLmvBAL4AHYeNtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826477379</pqid></control><display><type>article</type><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</creator><creatorcontrib>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</creatorcontrib><description>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3284463</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Cameras ; Computer vision ; Datasets ; Deep descriptors ; deep neural networks ; driverless vehicles ; Geometry ; interest point detectors ; Machine learning ; mobile robots ; Pipelines ; Pose estimation ; Robot vision systems ; Robotics ; Task analysis ; Tracking ; visual odometry ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</cites><orcidid>0000-0002-2925-5184 ; 0000-0002-6446-8687 ; 0000-0002-6316-9677 ; 0000-0003-1557-2629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147203$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hanif, Muhammad Shehzad</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Munawar, Khalid</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid M.</creatorcontrib><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><title>IEEE access</title><addtitle>Access</addtitle><description>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep descriptors</subject><subject>deep neural networks</subject><subject>driverless vehicles</subject><subject>Geometry</subject><subject>interest point detectors</subject><subject>Machine learning</subject><subject>mobile robots</subject><subject>Pipelines</subject><subject>Pose estimation</subject><subject>Robot vision systems</subject><subject>Robotics</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>visual odometry</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbWQXFPUX6KHBc49JKv2Ro7SzOiAouHoN1Z3KTIax0yY9gv_ezLYs1qE-HvVeQb0su-BswTlT1zdtu3x-XggmYAGikbKCo-xE8EoVUEL160d_nJ3HuGUpmgSV9Ulml8MGh94N67z1wwcNk_MD7vI78m80hc-iw0gmf3Vxn9BHM6P5kxtp5wbKp03w-_UmXw0TrQMe2Lm3-S3RmFLsgxsnH-JZ9tviLtL5dz3NXv4s_7b3xcPj3aq9eSh6KNVUSJRYqk5JLnqLJTNgBO-gRA6sbhphGktYQyfIdNJwhkYxU6cJJFdoOJxmq1nXeNzqMbg3DJ_ao9P_AB_WGsPk-h1poKayvCHFqnQVFfZWKms5MirJCpm0rmatMfj3PcVJb_0-pOdELRpRybqGWqUtmLf64GMMZP9f5Uwf_NGzP_rgj_72J7EuZ5Yjoh8MLmvBAL4AHYeNtw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hanif, Muhammad Shehzad</creator><creator>Bilal, Muhammad</creator><creator>Munawar, Khalid</creator><creator>Al-Saggaf, Ubaid M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid><orcidid>https://orcid.org/0000-0002-6446-8687</orcidid><orcidid>https://orcid.org/0000-0002-6316-9677</orcidid><orcidid>https://orcid.org/0000-0003-1557-2629</orcidid></search><sort><creationdate>20230101</creationdate><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><author>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep descriptors</topic><topic>deep neural networks</topic><topic>driverless vehicles</topic><topic>Geometry</topic><topic>interest point detectors</topic><topic>Machine learning</topic><topic>mobile robots</topic><topic>Pipelines</topic><topic>Pose estimation</topic><topic>Robot vision systems</topic><topic>Robotics</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>visual odometry</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanif, Muhammad Shehzad</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Munawar, Khalid</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanif, Muhammad Shehzad</au><au>Bilal, Muhammad</au><au>Munawar, Khalid</au><au>Al-Saggaf, Ubaid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3284463</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid><orcidid>https://orcid.org/0000-0002-6446-8687</orcidid><orcidid>https://orcid.org/0000-0002-6316-9677</orcidid><orcidid>https://orcid.org/0000-0003-1557-2629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2826477379 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Benchmark testing Cameras Computer vision Datasets Deep descriptors deep neural networks driverless vehicles Geometry interest point detectors Machine learning mobile robots Pipelines Pose estimation Robot vision systems Robotics Task analysis Tracking visual odometry Visualization |
title | Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Conventional%20Geometry-based%20Visual%20Odometry%20Pipeline%20through%20Integration%20of%20Deep%20Descriptors&rft.jtitle=IEEE%20access&rft.au=Hanif,%20Muhammad%20Shehzad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3284463&rft_dat=%3Cproquest_ieee_%3E2826477379%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826477379&rft_id=info:pmid/&rft_ieee_id=10147203&rft_doaj_id=oai_doaj_org_article_3e86f18e906a4aa9acf49ff1a0e5ef24&rfr_iscdi=true |