Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors

Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Hanif, Muhammad Shehzad, Bilal, Muhammad, Munawar, Khalid, Al-Saggaf, Ubaid M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Hanif, Muhammad Shehzad
Bilal, Muhammad
Munawar, Khalid
Al-Saggaf, Ubaid M.
description Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.
doi_str_mv 10.1109/ACCESS.2023.3284463
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2826477379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10147203</ieee_id><doaj_id>oai_doaj_org_article_3e86f18e906a4aa9acf49ff1a0e5ef24</doaj_id><sourcerecordid>2826477379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbWQXFPUX6KHBc49JKv2Ro7SzOiAouHoN1Z3KTIax0yY9gv_ezLYs1qE-HvVeQb0su-BswTlT1zdtu3x-XggmYAGikbKCo-xE8EoVUEL160d_nJ3HuGUpmgSV9Ulml8MGh94N67z1wwcNk_MD7vI78m80hc-iw0gmf3Vxn9BHM6P5kxtp5wbKp03w-_UmXw0TrQMe2Lm3-S3RmFLsgxsnH-JZ9tviLtL5dz3NXv4s_7b3xcPj3aq9eSh6KNVUSJRYqk5JLnqLJTNgBO-gRA6sbhphGktYQyfIdNJwhkYxU6cJJFdoOJxmq1nXeNzqMbg3DJ_ao9P_AB_WGsPk-h1poKayvCHFqnQVFfZWKms5MirJCpm0rmatMfj3PcVJb_0-pOdELRpRybqGWqUtmLf64GMMZP9f5Uwf_NGzP_rgj_72J7EuZ5Yjoh8MLmvBAL4AHYeNtw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826477379</pqid></control><display><type>article</type><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</creator><creatorcontrib>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</creatorcontrib><description>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3284463</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Benchmark testing ; Cameras ; Computer vision ; Datasets ; Deep descriptors ; deep neural networks ; driverless vehicles ; Geometry ; interest point detectors ; Machine learning ; mobile robots ; Pipelines ; Pose estimation ; Robot vision systems ; Robotics ; Task analysis ; Tracking ; visual odometry ; Visualization</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</cites><orcidid>0000-0002-2925-5184 ; 0000-0002-6446-8687 ; 0000-0002-6316-9677 ; 0000-0003-1557-2629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10147203$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Hanif, Muhammad Shehzad</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Munawar, Khalid</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid M.</creatorcontrib><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><title>IEEE access</title><addtitle>Access</addtitle><description>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</description><subject>Artificial neural networks</subject><subject>Benchmark testing</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep descriptors</subject><subject>deep neural networks</subject><subject>driverless vehicles</subject><subject>Geometry</subject><subject>interest point detectors</subject><subject>Machine learning</subject><subject>mobile robots</subject><subject>Pipelines</subject><subject>Pose estimation</subject><subject>Robot vision systems</subject><subject>Robotics</subject><subject>Task analysis</subject><subject>Tracking</subject><subject>visual odometry</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbWQXFPUX6KHBc49JKv2Ro7SzOiAouHoN1Z3KTIax0yY9gv_ezLYs1qE-HvVeQb0su-BswTlT1zdtu3x-XggmYAGikbKCo-xE8EoVUEL160d_nJ3HuGUpmgSV9Ulml8MGh94N67z1wwcNk_MD7vI78m80hc-iw0gmf3Vxn9BHM6P5kxtp5wbKp03w-_UmXw0TrQMe2Lm3-S3RmFLsgxsnH-JZ9tviLtL5dz3NXv4s_7b3xcPj3aq9eSh6KNVUSJRYqk5JLnqLJTNgBO-gRA6sbhphGktYQyfIdNJwhkYxU6cJJFdoOJxmq1nXeNzqMbg3DJ_ao9P_AB_WGsPk-h1poKayvCHFqnQVFfZWKms5MirJCpm0rmatMfj3PcVJb_0-pOdELRpRybqGWqUtmLf64GMMZP9f5Uwf_NGzP_rgj_72J7EuZ5Yjoh8MLmvBAL4AHYeNtw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Hanif, Muhammad Shehzad</creator><creator>Bilal, Muhammad</creator><creator>Munawar, Khalid</creator><creator>Al-Saggaf, Ubaid M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid><orcidid>https://orcid.org/0000-0002-6446-8687</orcidid><orcidid>https://orcid.org/0000-0002-6316-9677</orcidid><orcidid>https://orcid.org/0000-0003-1557-2629</orcidid></search><sort><creationdate>20230101</creationdate><title>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</title><author>Hanif, Muhammad Shehzad ; Bilal, Muhammad ; Munawar, Khalid ; Al-Saggaf, Ubaid M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4a4a59b9412cfa50d3d21b35a1307882d8fea73b2edb4d10ad90d72ed3419ad13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Benchmark testing</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep descriptors</topic><topic>deep neural networks</topic><topic>driverless vehicles</topic><topic>Geometry</topic><topic>interest point detectors</topic><topic>Machine learning</topic><topic>mobile robots</topic><topic>Pipelines</topic><topic>Pose estimation</topic><topic>Robot vision systems</topic><topic>Robotics</topic><topic>Task analysis</topic><topic>Tracking</topic><topic>visual odometry</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanif, Muhammad Shehzad</creatorcontrib><creatorcontrib>Bilal, Muhammad</creatorcontrib><creatorcontrib>Munawar, Khalid</creatorcontrib><creatorcontrib>Al-Saggaf, Ubaid M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanif, Muhammad Shehzad</au><au>Bilal, Muhammad</au><au>Munawar, Khalid</au><au>Al-Saggaf, Ubaid M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Geometry-based Visual Odometry (VO) techniques are renowned in the fields of computer vision and robotics. They use methods from multi-view geometry to estimate camera motion from visual data obtained from one or more cameras. Tracking the camera motion precisely between different views is dependent on the correct estimation of correspondences between salient image points of the views. In practice, geometry-based methods are found to be quite effective but do not perform well in challenging cases caused by abrupt motion, occlusions, textureless and low-light scenes, etc. due to tracking failures. On the contrary, end-to-end learning from visual data using deep neural networks is an emerging area of research and deals with challenging cases successfully. Despite being computationally expensive, these methods do not outperform their counterparts in conditions favorable to geometry-based methods. Considering these facts in this work, our goal is to integrate deep descriptors to improve the correspondence between image points for tracking in a traditional geometry-based VO pipeline. We propose a simple stereo VO pipeline inspired by popular techniques found in the literature. Two conventional and four deep descriptors have been used in our experiments conducted on various image sequences of the challenging KITTI benchmark dataset. We have determined empirically that deep descriptors can effectively minimize drift in the VO estimates and produce better camera trajectories. The experimental results on the KITTI dataset demonstrate that our VO method performs at par with the state-of-the-art works reported in the literature.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3284463</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2925-5184</orcidid><orcidid>https://orcid.org/0000-0002-6446-8687</orcidid><orcidid>https://orcid.org/0000-0002-6316-9677</orcidid><orcidid>https://orcid.org/0000-0003-1557-2629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2826477379
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Benchmark testing
Cameras
Computer vision
Datasets
Deep descriptors
deep neural networks
driverless vehicles
Geometry
interest point detectors
Machine learning
mobile robots
Pipelines
Pose estimation
Robot vision systems
Robotics
Task analysis
Tracking
visual odometry
Visualization
title Enhancing Conventional Geometry-based Visual Odometry Pipeline through Integration of Deep Descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Conventional%20Geometry-based%20Visual%20Odometry%20Pipeline%20through%20Integration%20of%20Deep%20Descriptors&rft.jtitle=IEEE%20access&rft.au=Hanif,%20Muhammad%20Shehzad&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3284463&rft_dat=%3Cproquest_ieee_%3E2826477379%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826477379&rft_id=info:pmid/&rft_ieee_id=10147203&rft_doaj_id=oai_doaj_org_article_3e86f18e906a4aa9acf49ff1a0e5ef24&rfr_iscdi=true